Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 121 dokumen yang sesuai dengan query
cover
Universitas Indonesia, 1997
S27305
UI - Skripsi Membership  Universitas Indonesia Library
cover
"Dibahas metode Needleman-Wunsch untuk menentukan pemadanan barisan dengan jumlah bobot maksimum, bila diberikan dua barisan nukleotida dengan panjang berbeda pada DNA. Pemadanan barisan dengan jumlah bobot maksimum dapat digunakan untuk menentukan kemiripan dari dua barisan yang diberikan. "
Universitas Indonesia, 2006
S27619
UI - Skripsi Membership  Universitas Indonesia Library
cover
Devi Riyanti
"Demam Berdarah Dengue (DBD) adalah penyakit yang disebabkan oleh infeksi virus dengue melalui gigitan nyamuk betina Aedes aegypti dan Aedes albocpictus (Kementerian Kesehatan RI, 2022). Hingga saat ini, belum ditemukan obat antivirus yang dapat menghilangkan virus DBD secara sempurna. Dilain pihak, penggunaaan bakteri Wolbachia telah menarik banyak perhatian sebagai alternatif solusi penanganan DBD (Li & Liu, 2021). Penelitian menemukan bahwa ketika nyamuk Aedes aegypti telah terinfeksi Wolbachia, bakteri yang ada dalam tubuh nyamuk dapat menghambat proses replikasi virus DBD pada nyamuk sehingga nyamuk memiliki kemungkinan yang kecil untuk menyebarkan virus ke manusia serta nyamuk tidak langsung terinfeksi apabila menghisap darah manusia dengan virus penyebab DBD (WMP, 2022). Pada skripsi ini, akan dibangun model penyebaran DBD dengan intervensi bakteri Wolbachia. Selanjutnya, dari model yang telah dibangun akan dilakukan kajian analitik yang meliputi analisis eksistensi serta kestabilan dari titik-titik keseimbangan dari model dan analisis nilai bilangan reproduksi dasar yang diperoleh (R0). Lalu, akan dilakukan simulasi numerik yang meliputi analisis elastisitas setiap kompartemen di titik endemik, analisis elastisitas dan sensitivitas R0, analisis sensitivitas lokal sistem dinamik, serta simulasi autonomous dari model. Penelitian yang akan dilakukan ini diharapkan memberikan pemahaman baru mengenai pengaruh efek dari bakteri Wolbachia pada populasi nyamuk dalam pengendalian penyebaran penyakit DBD.

Dengue is a disease caused by a viral infection of dengue through the bite of female Aedes aegypti and Aedes albopictus mosquitoes (Kementerian Kesehatan RI, 2022). Until now, no antivirus drugs have been found to eliminate the dengue virus perfectly. On the other hand, the use of Wolbachia bacteria has attracted a lot of attention as an alternative solution to the handling of dengue spread (Li & Liu, 2021). Study results found that when the Aedes aegypti mosquito was infected with Wolbachia, the bacteria present in its host’s body can inhibit the replication process of the dengue virus in mosquitoes so that mosquitoes have a slight possibility of spreading the dengue virus to humans and mosquitoes are not directly infected when sucking human blood with the dengue virus that causes dengue (WMP, 2022). In this thesis, a model will be built on the spread of dengue with the intervention of Wolbachia bacteria. Furthermore, from that model has been built, an analytical study will be carried out which includes an analysis of the existence and stability of the equilibrium points of the model, also the analysis of the value of the basic reproduction number (R0) obtained. Then, a numerical simulation will be carried out which includes elasticity analysis of every compartment on endemic equilibrium points, elasticity and sensitivity analysis on basic reproduction number (R0), local sensitivity analysis on the dynamical system, and autonomous simulation of the model. This research that will be done is expected to provide a new understanding of the influence of the effects of the Wolbachia bacteria in mosquito populations in controlling the spread of dengue.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Athaya Yumna Fathiyah
"Demam berdarah dengue (DBD) merupakan salah satu vector-borne diseases yang disebabkan oleh virus dengue dan ditularkan oleh nyamuk Aedes Aegypti dan Aedes Albopictus. Penyakit DBD dapat dibedakan menjadi dua, yaitu DBD tanpa gejala dan dengan gejala. Salah satu strategi untuk menangani DBD adalah penemuan kasus aktif, yaitu proses identifikasi terhadap orang yang diduga menderita DBD menggunakan tes diagnostik. Setelah terkonfirmasi, penderita DBD akan diberikan perawatan. Pada skripsi ini digunakan model matematika untuk melihat bagaimana peran penemuan kasus aktif dalam pengendalian DBD. Model dibentuk menggunakan sistem persamaan diferensial biasa nonlinier berdimensi sembilan dan melibatkan dua populasi yaitu manusia dan nyamuk. Populasi manusia dibagi menjadi tujuh subpopulasi, sedangkan populasi nyamuk dibagi menjadi dua subpopulasi. Dari model, dilakukan kajian analitik yang meliputi analisis nilai bilangan reproduksi dasar , analisis keberadaan dan kestabilan titik keseimbangan bebas penyakit dan titik keseimbangan endemik. Dilakukan kajian numerik meliputi analisis sensitivitas dan elastisitas terhadap R0, analisis sensitivitas lokal sistem dinamik serta simulasi autonomous dari model. Berdasarkan kajian analitik yang dilakukan, diperoleh bahwa titik keseimbangan bebas penyakit stabil asimtotik lokal pada R0<1. Pada  R0 = 1, model dapat mengalami bifurkasi maju atau mundur. Sehingga titik endemik dapat muncul ketika  R0<1. Hasil kajian numerik yang dilakukan menunjukkan bahwa penemuan kasus aktif dapat mereduksi jumlah manusia terinfeksi dalam populasi.

Dengue is one of the vector-borne diseases caused by the dengue virus and transmitted by Aedes Aegypti and Aedes Albopictus mosquitoes. Dengue can be divided into asymptomatic and symptomatic. One strategy to control dengue is active case finding. Active case finding aims to find dengue cases that have not been detected using diagnostic tests. Once confirmed, dengue sufferers will receive treatment. This thesis uses a mathematical model to examine the role of active case finding in dengue control. The model will use a nine-dimensional nonlinear differential equation system and involves two populations, humans and mosquitoes. The human population is divided into seven subpopulations, and the mosquito population is divided into two subpopulations. From the model, an analytical study will be carried out including analysis of the basic reproduction number (R0), existence and stability of disease-free equilibrium points and endemic equilibrium points. Next, a numerical study will be conducted in this thesis including sensitivity and elasticity analysis of R0, local sensitivity analysis of the dynamic system, and autonomous simulation of the model. Analysis of the model shows that disease-free equilibrium is globally asymptotically stable when R0<1. Furthermore, when R0=1, the model can perform forward or backward bifurcation. Numerical studies show that increasing the active case finding rate will reduce the number of infected humans in the population.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Tiara Ayumi
"Tuberkulosis (TB) merupakan salah satu penyakit menular yang menyebabkan kematian di dunia. TB disebabkan oleh Mycobacterium tuberculosis dan umumnya menyerang paru-paru. Berbagai pendekatan matematika telah dilakukan dalam menganalisis penyebaran TB. Pada skripsi ini, dikonstruksi model matematika penyebaran TB dengan pendekatan sistem persamaan diferensial dimana populasi manusia dibagi menjadi empat kompartemen. Fakta penting yang dipertimbangkan dalam model ini adalah adanya manusia yang terinfeksi TB laten dan intervensi perawatan terpantau. Selanjutnya, model tersebut dikembangkan menjadi masalah kontrol optimal untuk memperoleh strategi intervensi yang optimal dalam mengendalikan sistem dinamik yang digambarkan oleh variabel state (manusia) dan variabel kontrol (intervensi perawatan terpantau). Masalah kontrol optimal dikonstruksi dengan menggunakan prinsip minimum Pontryagin. Kajian analitik meliputi analisis eksistensi dan kestabilan secara lokal dan global dari titik-titik keseimbangan model dan hubungannya dengan bilangan reproduksi dasar (R_0). Selanjutnya, simulasi numerik terhadap model dengan membuat berbagai skenario kontrol dan analisis efektivitas biaya untuk mengetahui strategi yang terbaik. Analisis efektivitas biaya pada skripsi ini menggunakan dua pendekatan, yaitu IAR (Infection Averted Ratio) dan ACER (Average Cost-Effectiveness Ratio). Dari hasil simulasi numerik, diperoleh bahwa skenario terbaik dalam upaya mereduksi kasus infeksi TB dengan biaya yang efektif adalah melakukan intervensi perawatan terpantau sejak awal infeksi dengan kontrol bergantung waktu.

Tuberculosis (TB) is one of the infectious diseases that causes death worldwide. TB is caused by Mycobacterium tuberculosis which commonly attacks the lungs. Various mathematical approaches have been used to analyze the spread of TB. In this thesis, the mathematical model of TB transmission is constructed using the approach of an ordinary differential equation system, where the human population is divided into four subpopulations. Important facts considered in the model are the existence of latent TB and monitored treatment intervention. Furthermore, the model was developed into an optimal control problem to obtain the optimal intervention strategy in controlling the dynamic system described by state variables (humans) and control variables (monitored treatment intervention). The optimal control problem is constructed by using Pontryagin minimum principle. Analytical study including an analysis of the existence of equilibrium points, local and global stability of the equilibrium points, and how they related to the basic reproduction number (R_0). Then, numerical simulations were carried out by making several control scenarios and cost-effectiveness analysis to find out the best strategy. Cost-effectiveness analysis in this thesis used two approaches, namely IAR (Infection Averted Ratio) and ACER (Average Cost-Effectiveness Ratio). From the results of the numerical simulation, the best strategy to reduce TB infection with effective cost is to do the monitored treatment in the early infection with time dependent control.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Sandy Athalla Syach
"Dalam kurun waktu beberapa tahun terakhir ini dunia sedang menghadapi bahaya dari pandemi serta peperangan atau konflik antar negara. Kasus seperti pandemi dan konflik atau perang antar negara merupakan kejadian atau kondisi ekstrim yang dapat terjadi kapan saja dan menimbulkan banyak korban jiwa. Oleh karena itu, diperlukan pemodelan yang dapat mengakomodir mortalitas akibat kejadian ekstrim tersebut. Model Lee-Carter merupakan sebuah model yang menggunakan data tingkat mortalitas dari kelompok usia yang diamati dari waktu ke waktu. Untuk mengakomodir tingkat mortalitas ekstrim, model Lee-Carter dimodifikasi menggunakan Extreme Value Theory (EVT) yang disebut dengan Model EVT modified Lee-Carter. Pendekatan EVT yang digunakan adalah pendekatan Peak Over Threshold (POT) dengan Generalized Pareto Distribution (GPD). Model ini diimplementasikan pada data tingkat mortalitas Indonesia tahun 1998 untuk peramalan tingkat mortalitas periode pandemi Covid-19 tahun 2021 dan 2022. Dalam pemodelan GPD, didapatkan nilai threshold sebesar 0,02. Untuk nilai yang berada di atas threshold, dimodelkan dengan GPD dan nilai yang berada dibawah threshold dimodelkan dengan distribusi normal dan empiris. Hasil yang didapatkan dari nilai Mean Absolute Error (MAE) dan Mean Absolute Percentage Error (MAPE) adalah model Extreme Value Theory Modified Lee-Carter distribusi empiris memberikan nilai MAPE terkecil sebesar 12,156%. Sementara itu, model Extreme Value Theory Modified Lee-Carter distribusi normal memiliki nilai MAPE sebesar 13,175% dan model Lee-Carter biasa sebesar 13,343% dalam peramalan tingkat mortalitas Indonesia pada kelompok usia yang mengalami kejadian ekstrim.

In the last few years the world has been facing danger from pandemics and wars or conflicts between countries. Cases such as pandemics and conflicts or wars between countries are extreme events or conditions that can occur at any time and cause many casualties. Therefore, modeling is needed that can accommodate mortality due to extreme events. The Lee-Carter model is a model that uses mortality rate data from age groups observed over time. To accommodate extreme mortality rates, the Lee-Carter model was modified using Extreme Value Theory (EVT) which is called the modified Lee-Carter EVT Model. The EVT approach used is the Peak Over Threshold (POT) approach with Generalized Pareto Distribution (GPD). This model was implemented on Indonesian mortality rate data in 1998 to forecast mortality rates for the Covid -19 pandemic period in 20 21 and 2022. In GPD modeling, a threshold value of 0.02 is obtained . For values that are above the threshold, they are modeled with GPD and values that are below the threshold are modeled with a normal and empirical distribution. The results obtained from the Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE) values are that the Extreme Value Theory Modified Lee-Carter empirical distribution model gives the smallest MAPE value of 12.156%. Meanwhile, the Extreme Value Theory Modified Lee-Carter normal distribution model has a MAPE value of 13.175% and the regular Lee-Carter model is 13.343% in predicting Indonesia's mortality rate in age groups that experience extreme events.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Jannice Coktama
"Waktu survival adalah waktu dimana seorang individu atau suatu objek bertahan hingga suatu kejadian terjadi. Data waktu survival lebih sering digambarkan dengan fungsi hazard karena kurva fungsi hazard dapat memiliki berbagai bentuk, seperti bentuk naik, turun, konstan, bathtub, dan unimodal. Salah satu distribusi yang dapat digunakan untuk memodelkan data waktu survival adalah distribusi Rayleigh. Distribusi Rayleigh memiliki fungsi hazard yang naik secara linier terhadap waktu. Namun pada praktiknya, tidak semua data waktu survival yang hazardnya mengalami peningkatan, terjadi secara linier. Akan tetapi, terdapat data waktu survival yang hazardnya naik dengan tren cekung ke atas maupun cekung ke bawah, turun, dan konstan. Dalam skripsi ini, dibahas pembentukan distribusi Rayleigh Weibull (RW) sebagai generalisasi dari distribusi Rayleigh dengan menggunakan metode Transformed-Transformer atau metode T-X. Generalisasi ini bertujuan untuk menambah fleksibilitas distribusi Rayleigh dengan menambah satu parameter bentuk (shape parameter). Kemudian, dibahas juga beberapa karakteristik dari distribusi RW, seperti fungsi kepadatan peluang, fungsi distribusi kumulatif, fungsi survival, fungsi hazard, dan momen ke-r. Estimasi parameter dari distribusi RW dilakukan dengan menggunakan metode maksimum likelihood. Sebagai ilustrasi, data pasien leukemia dimodelkan dengan distribusi Rayleigh, distribusi Weibull, dan distribusi Rayleigh Weibull. Hasil pemodelan menunjukkan bahwa distribusi Rayleigh Weibull lebih baik dalam memodelkan data dibandingkan dengan distribusi Rayleigh dan distribusi Weibull.

Survival time is the time where an individual or object survives until an event occurs. Survival data is more frequently described with a hazard function because the curve of the hazard function can have various shapes, such as increasing, decreasing, constant, bathtub, and unimodal. Rayleigh distribution is one of the distributions that can be used to model survival data. Rayleigh distribution has a linearly increasing hazard function curve. However, in practice, not every survival data shows a linear increase. There are survival data where the hazard increases with a concave up trend or concave down trend, decreasing, and constant. The Transformed-Transformer method, often known as the T-X method, is used to construct Rayleigh Weibull distribution as a generalization of Rayleigh distribution. This generalization aims to increase the flexibility of Rayleigh distribution by adding one shape parameter. Some characteristics of Rayleigh Weibull distribution, such as probability density function, distribution function, survival function, hazard function, and r-th moment are also discussed. Rayleigh Weibull distribution’s parameters were estimated using the maximum likelihood method. As an illustration, leukemia cancer data is modeled with Rayleigh distribution, Weibull distribution, and Rayleigh Weibull distribution. In comparison to Rayleigh distribution and Weibull distribution, Rayleigh Weibull distribution is better at modeling the data.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Darin Ramadhiani Gita Wijaya
"Sebagai BUMN yang bergerak di bidang energi, PT Pertamina (Persero) harus memastikan distribusi BBM Subsidi tepat sasaran dan tidak terjadi penyalahgunaan. Dalam upaya tersebut, mulai 1 Juli 2022 Pertamina melakukan uji coba program Subsidi Tepat, di mana konsumen BBM Subsidi yang memiliki kendaraan roda empat harus mendaftarkan kendaraannya untuk dapat membeli Pertalite atau Biosolar. Salah satu cara pendaftaran program Subsidi Tepat dapat dilakukan di aplikasi digital MyPertamina, suatu aplikasi loyalitas untuk seluruh pelanggan produk Pertamina yang dapat diunduh di toko aplikasi digital Play Store. Hingga awal Maret 2023, aplikasi MyPertamina telah diunduh sebanyak lebih dari 10 juta kali di Play Store. Namun, penilaian (rating) yang diberikan pengguna di Play Store hanya mencapai 2,9/5. Angka tersebut cukup kecil jika dibandingkan dengan aplikasi layanan pemerintah lainnya yang memiliki jumlah unduhan serupa. Dengan banyaknya jumlah pengunduh dan rendahnya rating dari pengguna, ulasan pengguna perlu dianalisis untuk memastikan kinerja aplikasi MyPertamina. Berdasarkan hal tersebut, penelitian ini akan menerapkan pendeteksian topik menggunakan model BERT-EFCM untuk menganalisis topik-topik mengenai aplikasi MyPertamina pada ulasan pengguna di Play Store dan akan menerapkan analisis sentimen menggunakan model BERT-NN untuk menganalisis sentimen yang diekspresikan pada setiap topik yang dibahas mengenai aplikasi MyPertamina pada ulasan pengguna di Play Store. Hasil penelitian menunjukkan terdapat tiga topik yang dibahas mengenai aplikasi MyPertamina yaitu, penggunaan aplikasi untuk pembelian BBM di SPBU, pendaftaran dan layanan yang terkait dengan aplikasi, dan evaluasi pengguna terhadap aplikasi. Pada keseluruhan topik, mayoritas pengguna memberikan sentimen negatif dengan perbandingan sentimen sebagai berikut: 84% negatif dan 16% positif untuk topik pertama, 85% negatif dan 15% positif untuk topik kedua, serta 80% negatif dan 20% positif untuk topik ketiga.

As a state-owned enterprise in the energy sector, PT Pertamina (Persero) must ensure the targeted distribution of subsidized fuel (BBM) and prevent misuse. In this effort, starting from July 1, 2022, Pertamina initiated a pilot program called "Subsidi Tepat" (Precise Subsidy), where BBM Subsidi consumers with four-wheeled vehicles are required to register their vehicles in order to purchase Pertalite or Biosolar. One of the registration methods for the Subsidi Tepat program is through the MyPertamina digital application, a loyalty application for all Pertamina product customers that can be downloaded from the Play Store digital application store. Until early March 2023, the MyPertamina application has been downloaded more than 10 million times from the Play Store. However, the user ratings given in the Play Store only reach 2,9/5. This rating is relatively low compared to other government service applications with a similar number of downloads. With a large number of downloads and low user ratings, it is necessary to analyze user reviews to ensure the performance of the MyPertamina application. Based on this, this research will apply topic detection using the BERT-EFCM model to analyze the topics discussed in user reviews of the MyPertamina application in the Play Store. It will also apply sentiment analysis using the BERT-NN model to analyze the sentiments expressed for each topic related to the MyPertamina application in user reviews on the Play Store. The research results show three topics discussed regarding the MyPertamina application: the use of the application for purchasing BBM at gas stations, registration and related services, and user evaluations of the application. Overall, the majority of users express negative sentiments with the following sentiment ratios: 84% negative and 16% positive for the first topic, 85% negative and 15% positive for the second topic, and 80% negative and 20% positive for the third topic.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Azkal Azkiya
"Coronavirus disease (COVID-19) adalah penyakit pernapasan menular yang disebabkan oleh jenis coronavirus baru. Penyakit ini sebelumnya disebut dengan 2019-nCoV atau 2019 novel coronavirus. Virus penyebab COVID-19 ini adalah SARS-CoV-2. Terdapat varian SARS-CoV-2 lain yang memiliki potensi berdampak besar bagi kesehatan masyarakat seperti Lambda dan Mu. Ada pula kelompok varian SARS-CoV-2 under monitoring yang belum diketahui dampak dan bentuk penyebarannya di tingkat masyarakat. Kappa, Iota, dan Epsilon merupakan beberapa contoh varian yang termasuk ke dalam kelompok tersebut. World Health Organization (WHO) terus melakukan pengawasan kemunculan varian SARS-CoV-2 yang baru. Varian SARS-CoV-2 yang telah diketahui penularan dan dampaknya cukup signifikan pada masyarakat hingga saat ini adalah Alpha, Beta, Delta, Gamma, dan Omicron. Penelitian ini menggunakan data dari kelima varian SARS-CoV-2 tersebut. Penelitian ini mengimplementasikan program unsupervised dari machine learning yaitu simulasi proses clustering untuk mengelompokkan varian SARS-CoV-2. Dilakukan ekstraksi fitur terhadap data sekuens protein SARS-CoV-2 menggunakan package discere dalam bahasa pemrograman Python. Melalui proses ekstraksi fitur dihasilkan 27 fitur data sekuens protein SARS-CoV-2 yang siap digunakan. Elbow method kemudian diimplementasikan terhadap data untuk mengetahui jumlah pembentukan cluster yang optimal untuk digunakan pada clustering. Berdasarkan elbow method didapatkan jumlah cluster optimal untuk simulasi clustering sebanyak  dan dilakukan juga simulasi dengan  untuk memberi kesempatan kepada seluruh varian untuk membentuk clusternya sendiri.  Metode clustering yang digunakan pada penelitian ini adalah spectral clustering. Cluster yang dihasilkan kemudian dievaluasi menggunakan metrik evaluasi silhouette score serta melihat runtime pada setiap simulasi yang dilakukan. Hasil silhouette score untuk simulasi dengan  bernilai 0,614 dan untuk simulasi dengan  yang bernilai 0,631. Durasi rata-rata runtime mencatat bahwa simulasi dengan  dengan 6,566 detik lebih baik dibanding simulasi dengan  dengan 7,529 detik. Berdasarkan hasil tersebut, spectral clustering dapat dilakukan terhadap varian SARS-CoV-2 dengan pemilihan jumlah cluster  menggunakan elbow method.

Coronavirus disease (COVID-19) is an infectious respiratory disease caused by a new type of coronavirus. This disease was previously called 2019-nCoV or 2019 novel coronavirus. The virus that causes COVID-19 is the SARS-CoV-2. There are several variants of SARS-CoV-2 that have the potential to have a major impact on public health, such as Lambda and Mu. There is also a group of variants of SARS-CoV-2 under monitoring whose impact and form of spread are unknown at the community level. Kappa, Iota, and Epsilon are some examples of variants that belong to this group. The World Health Organization (WHO) continues to monitor the emergence of a new variant of SARS-CoV-2. The variants of SARS-CoV-2 that are known to transmit and have a significant impact on society so far are Alpha, Beta, Delta, Gamma and Omicron. This study uses data from that five variants of SARS-CoV-2. This study implements an unsupervised program from machine learning, which is a simulation of the clustering process to group variants of SARS-CoV-2 . Feature extraction was carried out on the SARS-CoV-2 protein sequence data using discere package in the Python programming language. Through the feature extraction process, 27 features of the SARS-CoV-2 protein sequence data were produced which were ready for use. The elbow method is then implemented on the data to find out the optimal number of cluster formations for use in clustering. Based on the elbow method, the optimal number of clusters for the clustering simulation is  and a simulation with  is also carried out to provide an opportunity for all variants to form their own clusters. The clustering method used in this study is spectral clustering. The resulting clusters are then evaluated using the silhouette score evaluation metric and looking at the runtime in each simulation that is performed. The results of the silhouette score for the simulation with  is worth 0.614 and for the simulation with  it is worth 0.631. The average duration of the runtime noted that the simulation with  with 6.566 seconds was better than the simulation with  with 7.529 seconds. Based on these results, spectral clustering can be carried out on the SARS-CoV-2 variant by selecting the number of  clusters using the elbow method.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Raven Ginola Imanuel
"Mata merupakan salah satu dari panca indra yang digunakan untuk melihat dan menjadi aset terpenting dalam hidup manusia. Salah satu bagian terpenting dari mata ialah kelopak mata di mana terdapat sebuah kelenjar yang disebut kelenjar meibom. Kelenjar ini berada pada lapisan air mata yang berguna untuk menyekresikan komponen minyak atau lipid dan berperan penting dalam memperlambat proses evaporasi yang menyebabkan terjaganya kelembapan pada mata. Kekurangan kelenjar meibom yang dikenal sebagai Disfungsi Kelenjar Meibom (DKM) merupakan penyebab utama dari penyakit mata kering. Karena proses diagnosis yang dikerjakan oleh tenaga medis terbilang subjektif, maka penelitian ini menggunakan pendekatan deep learning untuk melakukan klasifikasi pada tingkat keparahan dari DKM. Klasifikasi dilakukan dengan membagi tingkat keparahan atau kehilangan kelenjar meibom berdasarkan hasil meiboscore-nya menjadi 4 kelas, yaitu kelas 0 untuk meiboscore ≤ 25%, kelas 1 untuk 25% < meiboscore ≤ 50%, kelas 2 untuk 50% < meiboscore ≤ 75%, dan kelas 3 untuk meiboscore  > 75%. Metode deep learning yang digunakan adalah Convolutional Neural Network (CNN) dengan arsitektur AlexNet. Data yang digunakan pada penelitian ini adalah 139 citra meibography yang bersumber dari Rumah Sakit Ciptomangunkusumo (RSCM) Departemen Kirana dari 35 pasien mata kering yang sudah mengalami augmentasi dan segmentasi, sehingga data akhir yang digunakan yaitu sebanyak 417 citra segmentasi. Pada tahap pre-processing, dilakukan perhitungan meiboscore dengan bantuan software dan membaginya ke dalam 4 kelas sesuai dengan nilai meiboscore­-nya. Citra yang sudah dilabel ini kemudian dibagi menjadi 80% data training dan 20% data testing. Dari 80% data training, diambil 10% untuk dijadikan data validation, sehingga 417 data tersebut terbagi menjadi 299 data training, 84 data testing, serta 34 data validation. Training model dilakukan menggunakan arsitekur AlexNet dengan hyperparameter berupa epoch sebanyak 100, batch size 32, dan learning rate 0,0001. Pada arsitektur ini juga diterapkan fungsi optimasi yaitu Adam (Adaptive moment estimation) dan fungsi loss categorical cross entropy. Proses modelling dilakukan sebanyak 5 kali percobaan dan memperoleh nilai rata-rata akurasi training dan validation sebesar 99,59% dan 99,41% dan nilai dari loss training dan loss validation sebesar 0,1259 dan 0,0524. Sedangkan rata-rata kinerja testing model berhasil memperoleh akurasi testing sebesar 87,38%; testing loss sebesar 0,5151; dan Area Under Curve (AUC) sebesar 0,9715.

The eye is one of the five senses used to see and is the most important asset in human life. One of the most important parts of the eye is the eyelid where there is a gland called meibomian gland. This gland is located in the tear film which is useful for secreting oil or lipid components and plays an important role in slowing down the evaporation process which leads to maintaining moisture in the eye. Meibomian gland deficiency, known as Meibomian Gland Dysfunction (MGD), is a major cause of dry eye disease. Since the diagnosis process carried out by medical personnel is subjective, this study uses a deep learning approach to classify the severity of MGD. Classification is done by dividing the severity or loss of meibomian glands based on meiboscore results into 4 classes, namely class 0 for meiboscore ≤ 25%, class 1 for 25% < meiboscore ≤ 50%, class 2 for 50% < meiboscore ≤ 75%, and class 3 for meiboscore > 75%. The deep learning method used is Convolutional Neural Network (CNN) with AlexNet architecture. The data used in this study are 139 meibography images sourced from Ciptomangunkusumo Hospital (RSCM) Kirana Department from 35 dry eye patients that have undergone augmentation and segmentation, so that the final data used is 417 segmentation images. In the pre-processing stage, meiboscore was calculated with the help of software and divided into 4 classes according to the meiboscore value. The labeled images were then divided into 80% training data and 20% testing data. From 80% of the training data, 10% is taken to be used as validation data, so that the 417 data is divided into 299 training data, 84 testing data, and 34 validation data. The training model is carried out using the AlexNet architecture with hyperparameters in the form of epochs of 100, batch size 32, and learning rate 0,0001. In this architecture, the optimization function Adam (Adaptive moment estimation) and categorical cross entropy loss function are also applied. The modeling process was carried out 5 times and obtained an average training and validation accuracy value of 99,59% and 99,41% and the value of training loss and validation loss of 0,1259 and 0,0524. While the average performance of the testing model successfully obtained a testing accuracy of 87,38%; testing loss of 0,5151; and Area Under Curve (AUC) of 0,9715.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>