Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 8 dokumen yang sesuai dengan query
cover
Rahma Rosaliana Saraswati
Abstrak :
Penelitian ini bertujuan untuk memahami penyebaran malaria dengan kasus resistansi terhadap multi obat antimalaria menggunakan model matematika yang merupakan modifikasi model matematika terkait resistansi terhadap obat antimalaria yang sudah ada. Model yang dirumuskan dalam penelitian ini memperhatikan fakta bahwa saat ini banyak kasus malaria dengan parasit yang resistan terhadap kombinasi beberapa obat antimalaria. Model yang dibentuk dalam penelitian ini terdiri dari dua belas variabel dengan delapan variabel manusia dan empat variabel vektor nyamuk, yang kemudian direduksi menjadi sepuluh variabel dengan tujuh variabel manusia dan tiga variabel nyamuk. Hasil analisis model ditemukan terdapat tujuh titik keseimbangan dan tiga bilangan reproduksi dasar. Adapun berdasarkan hasil simulasi numerik didapatkan bahwa laju tingkat kontak infeksi antara nyamuk dengan manusia dan laju tingkat kegagalan pengobatan mempengaruhi jumlah individu terinfeksi malaria. Berdasarkan hasil analisis dan simulasi numerik pada model ditemukan bahwa untuk mencegah penyebaran penyakit malaria dengan resistansi obat antimalaria dapat dilakukan dengan cara penggunaan kelambu dan obat nyamuk, serta memperbaiki sistem pengobatan terhadap penyakit malaria. Di sisi lain, ditemukan juga bahwa sangat penting untuk menurunkan angka infeksi malaria yang resistan terhadap multi obat antimalaria terlebih dahulu, sehingga dapat menurunkan angka infeksi malaria dengan parasit resistan terhadap satu jenis obat dan kemudian menurunkan parasit yang sensitif terhadap obat antimalaria. ......This research aims to understand the spread of malaria with cases of antimalarial multidrug resistance using a mathematical model which is a modification of a exist mathematical model about antimalarial drug resistance. The model was formulated taking into account the fact that currently there are many cases of malaria with parasites that are resistant to a combination of several antimalarial drugs. The model in this research consists of twelve variables with eight human variables and four mosquito vector variables, which were then reduced to ten variables with seven human variables and three mosquito variables. The analytical result shows that the model has seven equilibrium points and three basic reproduction number. Based on the results of numerical simulations, it was found that the rate of infection between mosquitoes and humans and the rate of treatment failure affect the number of individuals infected with malaria. Based on the results of analysis and numerical simulations of the model, it was found that preventing the spread of malaria with antimalarial drug resistance can be done by using mosquito nets or mosquito coils and improving the treatment system for malaria. On the other hand, it was also found that it is very important to reduce the number of malaria infections that are resistant to multidrug antimalarial first, so that we can reduce the number of malaria infections with parasites that are resistant to one type of drug and control parasites that are sensitive to antimalarial drugs.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Febyan Vitra
Abstrak :
Malaria merupakan penyakit menular berbahaya yang perlu diperhatikan karena masih mendiami beberapa daerah di Indonesia, bahkan sejak masa kolonial Belanda hingga kini. Oleh sebab itu, dibangunlah sebuah model deterministik penyebaran penyakit malaria untuk menganalisa lebih lanjut masalah ini. Pada model disertakan pula intervensi yaitu berupa pelaksanaan fumigasi dan penggunaan kelambu sebagai kiat melawan malaria. Model yang diajukan mengacu pada model yang dibangun oleh Xiunan W. dan Xiao Q. 2017 yaitu terdapat intervensi berupa kelamu namun bukan kelambu berinsektisida dan menambahkan intervensi berupa fumigasi pada model. Selanjutnya, dianalisa titik keseimbangan dan R0 dari model. Didapat bahwa, intervensi fumigasi yang diberikan pada model memberikan pengaruh terhadap R0 model. Beberapa simulasi numerik akan dipaparkan untuk memberikan interpretasi terhadap hasil kajian analitik. ......Malaria is a dangerous infectious disease that should be taken care of as it is still persist in some areas in Indonesia, ever since the Dutch colonized the country. For this reason, a deterministic model for the spreading of malaria is constructed to further analyze the problem. In this model, fumigation and the use of bed nets were used as the interventions against the malaria. The proposed model refers to the model constructed by Xiunan and Xiao 2017 which involved bed nets intervention but only a regular bed nets with no insecticide and also added other intervention which is fumigation in the model. Furthermore, the equilibrium point and R0 of the model were examined. The result shows that fumigation intervention in the model showed effects toward the R0 model. Several numeric simulations were further elucidated to interpret the analytic result.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Tengku Nadya Shafira
Abstrak :
Malaria merupakan penyakit infeksi disebabkan oleh parasit Plasmodium yang hidup danberkembang biak dalam sel darah merah manusia. Penyakit malaria ditularkan oleh nyamukmalaria Anopheles betina. Hingga saat ini Indonesia masih tergolong negara endemikmalaria. Pencegahan malaria pada daerah endemik yang dilakukan oleh pemerintahsaat ini salah satunya adalah dengan pembagian kelambu atau kelambu berinsektisida.Selain itu, pencegahan lain yang paling popular dan sering dilakukan oleh masyarakatadalah dengan fumigasi. Namun, terdapat beberapa kendala yang timbul akibat penggunaanfumigasi diantaranya adalah biaya yang besar dan penggunaan fumigasi terusmenerusdapat berdampak buruk pada lingkungan. Perbedaan musim berpengaruh terhadapekspektasi hidup nyamuk Anopheles betina. Dalam skripsi ini akan dikonstruksi model penyebaran penyakit malaria dengan fumigasi dan penggunaan kelambu yang dapatmenangkap fenomena yang terjadi di lapangan. Model tersebut merupakan model deterministikyang dikembangkan menjadi masalah kontrol optimal. Strategi pengendalianpenyebaran penyakit malaria dengan menggunakan fumigasi dilakukan guna membasminyamuk pembawa penyakit malaria dengan biaya fumigasi yang minimal. Prinsip Pontryagin digunakan untuk memperoleh karakteristik masalah kontrol optimal. Intervensi fumigasiyang diberikan tidak berlangsung sepanjang waktu, dalam hal ini intervensi direpresentasikansebagai hasil transformasi fungsi kontinu menjadi fungsi semi-diskrit. Hasil simulasi numerik menunjukkan bahwa intervensi fumigasi dapat mengurangi jumlah populasimanusia terinfeksi penyakit malaria. Dalam memilih strategi kontrol optimal lebihbaik mendahulukan strategi endemic prevention dibandingkan dengan strategi endemicreduction. Namun, guna mendapatkan hasil intervensi yang lebih efektif perlu memperhatikannilai R0. Lingkungan yang berpotensi endemik R0 > 1 membutuhkan pemberianintervensi fumigasi yang lebih tinggi dibandingkan dengan lingkungan yang tidakberpotensi endemik R0 < 1. Selain itu, kombinasi penggunaan kelambu dan intervensifumigasi dapat mereduksi jumlah nyamuk dan manusia terinfeksi malaria dengan biayayang lebih minimal. Pada saat laju kematian alami nyamuk bergantung pada musim,diberikan intervensi fumigasi yang lebih tinggi ketika musim hujan dan akan menurunketika musim kemarau. ......Malaria is an infectious disease caused by Plasmodium parasites that live and multiplyin human red blood cells. Malaria is transmitted by malaria mosquitoes Anophelesfemales. Until now Indonesia is still classified as an endemic malaria country. Preventionof disease in endemic areas conducted by the government at this time one of them is bya division of mosquito nets or insecticide treated nets. Besides, the most popular andoften done prevention by the community is by fumigation. However, some obstaclesarise due to the use of fumigation such as significant costs, and the use of continuousfumigation can have an adverse impact on the environment. Seasonal differences affectthe life expectancy of Anopheles female mosquitoes. In this paper will be constructeda model of malaria disease distribution with fumigation and use of mosquito net thatcan catch phenomenon that happened in the field. The model is a deterministic modeldeveloped into an optimal control problem. The strategy of controlling the spread ofmalaria by using fumigation is done to eradicate the mosquito carrying malaria diseasewith minimal fumigation cost. The Pontryagin principle is applied to obtain optimalcontrol problem characteristics. The given fumigation intervention does not take placeover time, in which case the interference is represented as a result of the transformationof a continuous function into a semi discrete role. The effect of numerical simulation shows that fumigation intervention can reduce the number of a human population infected with malaria disease. In choosing an optimal control strategy, it is better to prioritize theendemic prevention strategy than the endemic reduction strategy. However, to get more effective interventions, it is necessary to pay attention to the value of R0. A potentiallyendemic R0 1 environment requires a higher fumigation intervention than a situationwith no potential endemic R0 1. Also, a combination of the use of mosquito nets andinterventions fumigation can reduce the number of mosquitoes and humans infected withmalaria at a more minimal cost. As the natural rate of death of mosquitoes depends onthe season, the number of infected mosquitoes and humans will increase during the rainyseason and will decrease during the dry season.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Wulan Hapsari Bhagyawanti
Abstrak :
Malaria merupakan penyakit infeksi yang disebabkan oleh parasit Plasmodium dimana penyebarannya terjadi melalui perantara nyamuk Anopheles betina. Di Indonesia, kasus malaria paling banyak ditemukan di bagian timur, seperti Papua dan Papua Barat. Salah satu cara untuk memahami penyebaran penyakit malaria yaitu menggunakan model matematika. Oleh karena itu, penelitian ini bertujuan untuk mengonstruksi model matematika penyebaran penyakit malaria dengan bentuk SIS-UV menggunakan sistem persamaaan diferensial biasa nonlinier berdimensi lima. Model matematika yang dibentuk dalam penelitian ini mempertimbangkan kepedulian manusia, faktor bias pada nyamuk, dan fumigasi pada nyamuk. Kajian analitik dilakukan untuk menganalisis eksistensi dan kestabilan titik-titik keseimbangan, serta bilangan reproduksi dasar (R0). Diperoleh bahwa titik keseimbangan bebas malaria eksis tanpa syarat dan akan bersifat stabil asimtotik lokal jika bilangan reproduksi dasar kurang dari satu (R0<1). Sementara itu, titik keseimbangan endemik malaria akan selalu muncul jika bilangan reproduksi dasar lebih dari satu (R0>1). Saat R0=1, terdapat kemungkinan muncul bifurkasi mundur yang dijelaskan menggunakan teorema Castillo-Chavez dan Song. Hal tersebut mengindikasikan bahwa tetap didapatkan titik keseimbangan endemik yang stabil asimtotik lokal meskipun R0<1. Selanjutnya, dilakukan penaksiran parameter menggunakan data akumulasi bulanan malaria tahun 2020 di Papua yang diperoleh dari Kementerian Kesehatan Republik Indonesia. Berdasarkan hasil estimasi, diperoleh nilai R0=1,35>1 yang mengindikasikan bahwa penyakit malaria menjadi endemik di Papua. Simulasi numerik diberikan untuk menggambarkan hasil dari kajian analitik. Hasil simulasi menunjukkan bahwa intervensi fumigasi dan peningkatan kepedulian manusia merupakan parameter yang efektif dalam mengubah nilai bilangan reproduksi dasar (R0). Oleh karena itu, penerapan kedua intervensi tersebut diharapkan dapat mengendalikan penyebaran penyakit malaria dalam populasi. ......Malaria is an infectious disease caused by the Plasmodium parasite where it is spread through female Anopheles mosquitoes. In Indonesia, malaria cases are mostly found in the eastern part, such as Papua and West Papua. One way to understand the spread of malaria is to use a mathematical model. Therefore, this study aims to construct a mathematical model of the spread of malaria in the form of SIS-UV using a five-dimensional nonlinear ordinary differential equation system. The mathematical model formed in this study considers people awareness, factors biased by mosquito, and mosquito fumigation. Analytical studies were conducted to analyze the existence and stability of equilibrium points, as well as basic reproduction numbers (R0). It was found that the malaria-free equilibrium point exists unconditionally and will be locally asymptotically stable if the basic reproduction number is less than one (R0<1). Meanwhile, the malaria endemic equilibrium point will always appear if the basic reproduction number is more than one (R0>1). When R0=1, there is the possibility of a backward bifurcation which is explained using the Castillo-Chavez and Song theorems. This indicates that a locally asymptotically stable endemic equilibrium point is still obtained even though R0<1. Furthermore, parameter estimation is carried out using monthly malaria accumulation data in 2020 in Papua obtained from the Ministry of Health of the Republic of Indonesia. Based on the estimation results, the value of R0=1.35>1 indicates that malaria is endemic in Papua. Numerical simulations are provided to illustrate the results of the analytical study. The simulation results show that the fumigation intervention and the improvement of people awareness are effective parameters in changing the value of the basic reproduction number (R0). Therefore, the application of these two interventions is expected to control the spread of malaria in the population. 
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Monyta Rahmania
Abstrak :
ABSTRAK
Malaria adalah penyakit yang disebabkan oleh parasit Plasmodium. Parasit ini ditularkan melalui gigitan nyamuk Anopheles betina yang terinfeksi. Penyakit malaria merupakan penyakit yang mematikan, kelompok usia paling rentan terhadap kematian akibat malaria adalah anak-anak berusia di bawah lima tahun. Gejala malaria meliputi demam, menggigil, sakit kepala, dan lain-lain. Terdapat penderita malaria yang tidak mengalami gejala apapun, namun dapat menularkan penyakit, penderita ini disebut carrier asimtomatik. Sebuah model matematika mengenai penyebaran malaria dengan carrier asimtomatik dan dua grup umur pada populasi manusia dibentuk pada penelitian ini. Pada model ini, dilakukan intervensi penggunaan kelambu berinsektisida tahan lama dan Indoor Residual Spraying yang menyebabkan kematian tambahan nyamuk. Kajian analitis yang ditinjau berdasarkan skala waktu cepat-lambat dilakukan pada penelitian ini. Simulasi numerik juga dilakukan untuk memperoleh gambaran dan pemahaman lebih baik mengenai model. Berdasarkan hasil simulasi numerik, dapat disimpulkan bahwa penggunaan kelambu berinsektisida tahan lama dan Indoor Residual Spraying mempengaruhi populasi nyamuk yang ditunjukkan oleh penurunan drastis pada populasi nyamuk.
ABSTRACT
Malaria is a disease caused by Plasmodium parasite. The parasite is transmitted through the bite of infected female Anopheles mosquito. Malaria is a fatal disease; the most vulnerable age group to malaria deaths are children aged under five years old. The symptoms of malaria include fever, shivering, headaches, etc. Individuals who are infected with malaria but showing no signs or symptoms are called asymptomatic carriers. A mathematical model of malaria transmission with asymptomatic carrier and two aged groups is constructed in this research. In this model, the extra mortality of mosquitos due to Long-Lasting Insecticide Nets (LLINs) and Indoor Residual Spraying is taken into account. Fast-slow timescales analysis is used in this research. Numerical simulations are also carried out to get a better understanding of the model. Based on the results of numerical simulations, it can be concluded that the use of Long-Lasting Insecticide Nets (LLINs) and Indoor Residual Spraying (IRS) affects mosquito population that is shown by a significant decrease of the mosquito population.
2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Radhiya Ahya Ahdika
Abstrak :
ABSTRAK
Penyakit malaria masih menjadi salah satu masalah kesehatan di dunia dikarenakan kasusnya yang meningkat hampir setiap tahun. Berdasarkan World Health Organization WHO, tahun 2016 kasus malaria di dunia meningkat dari 211 juta kasus menjadi 216 juta kasus. Penyakit menular yang disebabkan oleh parasit Plasmodium ini dapat ditularkan ke manusia melalui gigitan nyamuk Anopheles betina. Pada kondisi di lapangan, ditemukan beberapa faktor yang berpengaruh terhadap penyebaran penyakit malaria, seperti faktor pada manusia suhu tubuh dan kandungan karbon dioksida yang dikeluarkan tubuh, dan faktor tempat tinggal yang dekat dengan air tergenang. Kedua faktor di atas dipengaruhi oleh faktor lingkungan yang berubah-ubah. Pada awal skripsi, model deterministik epidemi SIR penyebaran penyakit malaria dengan intervensi kelambu dan fumigasi dibahas, beserta penentuan nilai basic reproduction number R0. Kemudian model SIR dikembangkan menjadi sistem persamaan diferensial stokastik sistem PDS untuk memahami pengaruh faktor lingkungan yang tak tentu terhadap penyebaran penyakit malaria. Sistem PDS dibentuk dengan penambahan faktor stokastik pada parameter laju infeksi. Untuk melihat pengaruh intensitas gangguan ? pada dan implikasi perubahan parameter krusial dalam R0 di sistem PDS, dilakukan simulasi numerik menggunakan metode Euler-Maruyama. Hasil simulasi numerik diantaranya menunjukkan bahwa besarnya intensitas gangguan ? menghasilkan pengaruh yang berbeda pada sistem ketika basic reproduction number R0 > 1 atau R0 < 1. Ketika R0 > 1, nilai? yang cukup besar menghasilkan solusi yang cukup berbeda dengan solusi deterministiknya, sedangkan nilai? yang cukup kecil tidak memberikan perbedaan yang signifikan. Hal yang menarik terjadi ketika R0 < 1, berapapun nilai ?, solusi stokastik selalu mendekati solusi deterministiknya.
ABSTRACT
Malaria becomes one of the world rsquo s health problems because of its increasing cases every year. Based on World Health Organization WHO, cases of malaria in the world in 2016 increased from 211 million cases to 216 million cases. This infectious diseases caused by Plasmodium parasite which can be transmitted to humans through the bite of Anopheles female mosquito. In the real condition, several factors have been found to affect the spread of malaria, such as factors in humans body temperature and carbon dioxide content released by the body, and residential factors close to stagnant water. Both factors are influenced by environmental factors that unpredictable. At the beginning of the thesis, the deterministic model of epidemic SIR spread of malaria disease with intervention of mosquito nets and fumigation will be discussed, along with the determination of the basic reproduction number R0. Then the SIR model was developed into a stochastic differential equation system SDE system to understand the effect of undue environmental factors on the spread of malaria. The SDE system is formed by the addition of a stochastic factor to the parameter of infection rate. To see the effect of noise intensity on and the implication of a crucial parameter change in R0 in the SDE system, a numerical simulation using the Euler Maruyama method is performed. Some of numerical simulation results show that the scale of the noise intensity obtain a different effect on the system when basic reproduction number R0 1 or R0 1. As R0 1, a considerable value of generates a solution quite different from its deterministic solution, whereas a small value does not make a significant difference. The interesting thing happens when R0 1, whatever the value, the stochastic solution always approaches its deterministic solution.
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Annisa Amalia
Abstrak :
Malaria adalah penyakit menular yang disebabkan oleh parasit Plasmodium dan ditularkan melalui gigitan nyamuk Anopheles betina. Dalam tesis ini dikonstruksikan model matematis penyebaran malaria dengan mempertimbangkan faktor bias dalam proses infeksi dan intervensi fumigasi dalam pengendalian malaria. Model tersebut dibangun sebagai model SIRI-UV dalam bentuk sistem persamaan perbedaan biasa enam dimensi. Analisis titik keseimbangan dan stabilitasnya dan analisis sensitivitas dari bilangan reproduksi dasar (R0) dilakukan secara analitik dan numerik. Berdasarkan studi analitik diperoleh dua jenis titik keseimbangan yaitu titik keseimbangan bebas penyakit dan titik keseimbangan endemik. Ketika R0 @@ 1, tidak ada titik keseimbangan endemik, atau ada dua titik keseimbangan endemik bila R0 1. Sedangkan bila R0 AA 1 terdapat titik keseimbangan endemik dan tiga titik keseimbangan jika R0 1. Melalui studi analitik dengan menggunakan aturan Descartes dan eksperimen numerik, menemukan bahwa percabangan ke belakang terjadi pada suatu saat R0 1, ​​dan saat R0 1 terjadi percabangan maju dan mundur secara bersamaan. Untuk Untuk mendukung interpretasi model, simulasi numerik dari sensitivitas R0 dan R0 juga dilakukan simulasi otonom dari parameter angka kematian nyamuk akibat fumigasi dan faktor bias. Hasil simulasi menunjukkan bahwa angka kematian nyamuk meningkat karena pengasapan akan meningkatkan kemungkinan penyakit tidak menyebar dan hilang, Adapun semakin besar faktor biasnya maka semakin besar pula jumlah nyamuk dan manusia yang terinfeksi. ......Malaria is a contagious disease caused by the parasite Plasmodium and transmitted through the bite of a female Anopheles mosquito. In this thesis, a mathematical model of the spread of malaria was developed by considering bias factors in the infection process and fumigation interventions in malaria control. The model is built as a SIRI-UV model in the form of a system of equations the usual six dimensional difference. The equilibrium point analysis and stability and sensitivity analysis of the basic reproduction number (R0) were carried out analytically and numerically. Based on the analytical study, two types of balance points were obtained, namely the disease-free balance point and the endemic balance point. When R0 @@ 1, no there is an endemic equilibrium point, or there are two endemic equilibrium points if R0 1. Whereas if R0 AA 1 there is an endemic equilibrium point and three equilibrium points if R0 1. Through analytic studies using Descartes' rule and numerical experiments it is found that the reverse branching occurs at one day R0 1, ​​and when R0 1 there is simultaneous forward and backward branching. To support the interpretation of the model, numerical simulations of the sensitivity of R0 and R0 were also carried out with autonomous simulations of the mosquito mortality rate parameters due to fumigation and bias factors. The simulation results show that the increased mosquito mortality rate due to smoking will increase the likelihood that the disease will not spread and disappear. The greater the bias factor, the greater the number of infected mosquitoes and humans.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Kemal Adam Roisy
Abstrak :
Malaria merupakan penyakit menular yang disebabkan oleh parasit Plasmodium dan ditularkan melalui gigitan nyamuk Anopheles betina. Dalam penelitian ini dibahas model matematis SIR (susceptible, infected, recovered)-SI untuk penyakit malaria dengan pengobatan (u2) dan fumigasi (u1) sebagai kontrol vektor nyamuk. Penelitian ini bertujuan mengkonstruksi model matematika penyebaran malaria, melakukan analisis kestabilan titik keseimbangan, analisis sensitivitas basic reproduction number (R0) serta melakukan kajian numerik untuk menentukan efektivitas u1 dan u2. Berdasarkan kajia analitik, terdapat dua jenis titik keseimbangan, yaitu titik keseimbangan bebas penyakit dan titik keseimbangan endemik. Terdapat dua titik keseimbangan endemik saat R0 < 1 dan satu titik keseimbangan endemik saat R0 > 1. Dengan analisis bifurkasi diketahui terjadi bifurkasi mundur yang mengimplikasikan kemungkinan terjadi endemik saat R0 < 1. Dilakukan simulasi numerik untuk mendukung intepretasi model. ......Malaria is an infectious disease caused by parasite Plasmodium and transmitted through female Anopheles mosquito bites. In this study we discussed mathematical model of SIR(susceptible, infected, recovered)-SI for malaria with treatment (u2) and fumigation (u1) as intermediary vector control. This study aims to construct mathematical model of malaria disease, analyze stability of equilibrium points, analyze sensitivity of basic reproduction number (R0), and perform numerical studies to determine the effectiveness of u1 and u2. Based on analytical study, there are two types of equilibrium points in this model, they are disease-free-equilibrium (DFE) and endemic-equilibrium (EE). There are two endemic equilibrium points when R0 < 1 and one endemic equilibrium when R0 > 1. Based on bifurcation analysis there is known to be a backward bifurcation that implies possibility of endemic occurrence when R0 < 1. Numerical simulations are performed to support the interpretation of the model.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library