Kami telah melakukan studi ab-initio pada hexagonal boron nitride (hBN) yang disisipkan antara lapisan-lapisan Ni(111) untuk menyelidiki antarmuka dari struktur bahan ini. Dalam studi ini, kami menggunakan sebanyak tiga lapisan atom Ni dalam satu bagian lempeng Ni dalam Ni(111)/hBN/Ni(111) untuk menentukan susunan atom yang tepat di daerah antarmuka. Perhitungan density functional theory untuk 36 struktur, menjadi dua kali lipat bergantung pada arah momen magnetik, yaitu konfigurasi paralel (PC) dan konfigurasi anti-paralel (APC), menunjukkan bahwa jumlah ikatan kimia lemah yang terbentuk dalam hibridisasi pd antara atom N dan Ni memiliki peranan yang sangat penting. Sebanyak maksimum dua ikatan hibridisasi pd menstabilkan struktur ini, dengan APC terbukti sebagai konfigurasi yang sangat stabil dan sesuai dengan hasil eksperimen terdahulu. Pada keadaan energi terendah, momen magnetik terinduksi pada atom N muncul ketika atom N digeser mendekati salah satu dari atom-atom N. Menariknya, arah momennya diubah oleh posisi lapisan N dan menghasilkan keadaan bi-stable dengan cara polarisasi elektrik ketika APC dipilih. Perhitungan probabilitas transmisi Ni/hBN/Ni yang telah memiliki struktur antarmuka yang tepat pada pusat persambungan, menunjukkan efek spin-filtering dimana arus dengan spin terpolarisasi dikontrol dengan medan listrik ketika pembalikan yang diinduksi sebuah medan diberikan.
We undertook an ab-initio study of hexagonal boron nitride (hBN) sandwiched between Ni(111) layers to examine the interface of this material structure. We considered Ni(111) /hBN/Ni(111) with a slab with three Ni atomic layers to determine the exact atom arrangement at the interface. The density functional theory calculations for 36 stacking arrangements, which are doubled with respect to the magnetic alignment of slabs in an anti-parallel configuration (APC) and parallel configuration (PC), revealed that the number of formed weak chemical bonds, in the pd-hybridization between the N and Ni atoms, is decisive. A maximum of two pd-hybridization bonds stabilized the structure, with APC proving to be the most favorable magnetic alignment, in line with the results of previous experimental studies. In the lowest energy state, an induced magnetic moment at an N site appears when N is moved closer to one of the Ni atoms. Interestingly, the moment direction is switched by the position of the N layer in the resulting bi-stable state with electrical polarization when APC is chosen. The transmission probability calculation of Ni/hBN/Ni having the determined interface structure at the center of the junction exhibits a spin-filtering effect where the spin-polarized current is controlled by the electric field when a field-induced reversal of the polarization is realized.
ZnO merupakan salah satu material semikonduktor yang unggul untuk aplikasi fotodetektor Ultraviolet (UV) karena memiliki celah pita yang lebar, sifat transparasi yang baik, tidak beracun, dan biaya produksi rendah dengan proses sintesis yang sederhana. Namun, mobilitas elektron fotodetektor UV masih rendah sehingga photocurrent dan responsivitas yang dihasilkan belum optimal. Oleh karena itu dalam penelitian ini dibuat heterostructure ZnO nanorods dengan MoSe2 nanosheets. MoSe2 nanosheets disintesis dengan metode liquid phase exfoliation dan dideposisi di atas permukaan ZnO nanorods yang ditumbuhkan di atas substrat kaca berelektroda Indium Tin Oxide (ITO) dengan metode spin coating. Penelitian ini menghasilkan MoSe2 nanosheets dan ZnO/MoSe2 dengan celah pita masing-masing sebesar 1,92 dan 3,17 eV. Penambahan MoSe2 nanosheets pada permukaan ZnO nanorods dapat meningkatkan responsivitas, detektivitas, dan sensitivitas fotodetektor UV berbasis ZnO nanorods, yaitu masing-masing sebesar 1,25 A/W, 1,9 Jones, dan 5701%. Peningkatan kinerja ini mungkin akibat pengurangan rekombinasi elektron-hole hasil fotoeksitasi oleh sinar UV dan penurunan arus gelap mungkin karena elektron terperangkap oleh MoSe2. Sedangkan, fotodetektor ZnO nanorods dan ZnO/MoSe2 tidak berfungsi di bawah penyinaran cyan dan red, karena photocurrent yang dihasilkan sangat kecil.
ZnO is one of the semiconductor materials that has been received much attention and also considered as a promising candidate for the photodetector due to its wide bandgap, good transparencey, non-toxicity, low-cost and simple preparation. However, photocurrent and responsivity of ZnO-based photodetector based on nanorods is less optimal because of its low electron mobility. Therefore, this study propose the heterostructure of ZnO nanorods and MoSe2 nanosheets. MoSe2 nanosheets were synthesized by the liquid phase exfoliation method and deposited on the surface of ZnO nanorods grown on Indium Tin Oxide electrode coated glass substrate (ITO) via the spin coating method. MoSe2 nanosheets and ZnO/MoSe2 show a bandgap of 1,92 and 3,2 eV, respectively. Responsivity, detectivity, and sensitivity of ZnO/MoSe2 heterostructures is is 1,25 A/W; 1,9 Jones; and 5701%, respectively. The increase in performance may be due to a reduction in the recombination of UV photoexcitated electron-holes and a decrease in dark currents possibly due to electrons being trapped by MoSe2. Whereas, ZnO nanorods and ZnO/MoSe2 photodetectors do not function under cyan and red irradiation, because the generated photocurrent is very small.