Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2 dokumen yang sesuai dengan query
cover
Bilqis Nur Fadhilah
"Seiring meningkatnya penggunaan elektronik dalam kehidupan sehari-hari, penggunaan baterai juga meningkat, terutama penggunaan baterai li-ion. Baterai li-ion sering dipakai pada peralatan yang bersifat re-chargeable, salah satunya adalah telepon genggam. Limbah baterai li-ion tergolong limbah B3 karena mengandung logam berat. Logam berat yang terkandung dalam limbah baterai tersebut dapat dilakukan perolehan kembali (recovery) untuk mengurangi efek bahayanya terhadap lingkungan. Kandungan logam berat tersebut merupakan logam berharga diantaranya logam nikel dan kobalt. Metode yang dapat dilakukan untuk recovery logam tersebut yaitu dengan proses leaching. Penelitian ini menggunakan H2SO4 sebagai leaching agent dan H2O2 sebagai reducing agent. Penambahan H2O2 bertujuan untuk mengurangi penggunaan H2SO4 saat proses leaching. Dalam penelitian ini, digunakan 2 M H2SO4, 4% v/v H2O2 pada kondisi operasi 75OC selama 2 jam, menghasilkan logam Ni dan Co ter-leaching sebesar 96,46% dan 94,95%. Larutan hasil leaching yang didapat akan dilakukan proses ekstraksi cair-cair menggunakan LIX 84-ICNS sebagai ekstraktan. Hasil dari proses ekstraksi cair-cair dengan konsentrasi ekstraktan sebesar 40% v/v, pH fasa akuatik sebesar 6,85 selama 45 menit ekstraksi, menghasilkan logam Ni dan Co terekstraksi sebesar 92,05% dan 86,67%.

The electronic devices used is increasing in daily basis, especially the used of li-ion batteries. Li-ion batteries is used for re-chargeable electronic devices such as smartphones. The spent of li-ion batteries is being classified as toxic and hazardous waste because it contains heavy metals. The heavy metals from spent li-ion batteries can be recovered to reduce the hazardous effect on the environment. Moreover, the heavy metals are also classified as the valuable metals, for example nickel and cobalt. One of the methods for metal recovery from li-ion battery is leaching process with H2SO4 as the leaching agent and H2O2 as the reducing agent. The addition of H2O2 is for reducing the used of H2SO4 in the leaching process. This research is using 2 M of H2SO4 and 4% v/v of H2O2, with the operating condition 75OC in 2 hours leaching process resulting 96,46% Ni and 94,95% Co extracted. The leachate liquor after leaching process is going for the next process, solvent extraction. The solvent extraction is using LIX 84-ICNS as the extractant. The result from solvent extraction with 40% v/v extractant concentration, pH aquatic phase 6,85 in 45 minutes extraction process is 92,05% Ni and 86,67% Co being extracted."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Areita Ghassani Labibah
"Masalah iklim yang ditimbulkan bahan bakar fosil membuat transisi ke sumber energi terbarukan semakin penting, salah satu bentuknya adalah penggunaan baterai Li-ion. Saat ini, kendaraan listrik menjadi pendorong terkuat untuk pengembangan baterai Li-ion, khususnya katoda LiNi1/3Mn1/3Co1/3O2 (NMC) yang memiliki kandungan Kobalt lebih rendah dari LiCoO2 (LCO). Salah satu upaya untuk meningkatkan performa katoda NMC, terutama kapasitas spesifiknya adalah dengan pemilihan material pengikat. Saat ini, pengikat organik Poly(vinylidene difluoride) (PVDF) telah umum digunakan sebagai pengikat. Akan tetapi, pengikat PVDF memiliki beberapa kekurangan, sehingga dilakukan penelitian menggunakan pengikat berbasis air, yaitu Carboxy Methyl Cellulose (CMC) dan Sodium Alginate (SA) sebagai pengganti alternatif. Pada penelitian ini, dilakukan karakterisasi dengan Scanning Electron Microscope-Energy Dispersive Spectroscopy (SEM-EDS) dan X-Ray Diffraction (XRD) untuk mengetahui karakteristik katoda, serta dilakukan pengujian performa elektrokimia baterai dengan Electrochemical Impedance Spectroscopy (EIS), Cyclic Voltammetry(CV), dan Charge-Discharge (CD). Hasil yang didapat adalah baterai dengan kapasitas spesifik yang paling besar dimiliki oleh sampel yang menggunakan material pengikat PVDF, yaitu 137,25 mAh/g. Kapasitas spesifik sampel yang menggunakan material pengikat CMC-SBR dan SA masing-masing sebesar 40,75 mAh/g dan 12,38 mAh/g. Material pengikat berbasis air memberikan keuntungan dalam beberapa aspek, tetapi secara keseluruhan belum dapat menggantikan peran PVDF sebagai material pengikat katoda NMC 622.

The climate problem caused by fossil fuels make a transition toward renewable energy sources more critical, one of the form of renewable energy is Li-ion battery. Currently, electric vehicles are the main drive for the development of Li-ion batteries, especially the LiNi0,6Mn0,2Co0,2O2 (NMC 622) cathode which has a lower Cobalt content than LiCoO2 (LCO). One of the effort to improve the performance of NMC cathode, especially the specific capacity, is by choosing a binder material. At the moment, Poly(vinylidene difluoride) (PVDF) organic binder has been commonly used as a binder. However, PVDF binders have drawbacks, so current research was carried out using water-based binders, namely Carboxy Methyl Cellulose (CMC) and Sodium Alginate (SA) as an alternative. In this study, characterization was done using Scanning Electron Microscope-Energy Dispersive Spectroscopy (SEM-EDS) and X-Ray Diffraction (XRD) to determine the characteristics of the cathode, as well as assess the electrochemical performance of the battery using Electrochemical Impedance Spectroscopy (EIS), Cyclic Voltammetry (CV), and Charge-Discharge (CD). Based on the results, battery with the largest specific capacity was owned by the sample using PVDF, with specific capacity of 137,25 mAh/g. Whereas, samples using CMC-SBR and SA have specific capacity of 40,75 mAh/g and 12,38 mAh/g, respectively. Water-based binder materials provide advantages in several aspects, but overall they cannot yet replace the role of PVDF as a binder material for the NMC 622 cathode."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library