Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 4 dokumen yang sesuai dengan query
cover
Panca Hariwan
"Adanya serangan atau akses yang tidak sah dapat mengakibatkan terjadinya kerusakan pada sistem web server. Pengamanan web server secara umum dilakukan dengan menggunakan firewall, namun ternyata hal itu saja belum cukup. Firewall secara umum memberlakukan setiap akses secara kaku dengan dua kondisi, yaitu: boleh akses atau tidak. Sehingga sulit untuk mendeteksi apabila serangan itu dilakukan oleh akses yang sah tetapi melampaui kewenangan yang diberikan padanya. Oleh sebab itu firewall harus disempurnakan, salah satunya dengan menambahkan perangkat IDPS untuk bekerjasama dengan firewall dalam melindungi web server. Pada percobaan yang dilakukan memperlihatkan, saat kondisi lalu lintas data idle, IDPS mengembalikan nilai prosesor sistem rata-rata sebesar 91,76 % , memori sistem rata-rata sebesar 71,43 %, dan bandwith sistem rata-rata sebesar 97,4 %. Pada kondisi lalu lintas data menengah, IDPS mengembalikan nilai prosesor sistem rata-rata sebesar 83 % , memori sistem rata-rata sebesar 89 %, dan bandwith sistem rata-rata sebesar 93,1 %. Sedangkan pada kondisi lalu lintas data tinggi, IDPS mengembalikan nilai prosesor sistem rata-rata sebesar 73 % , memori sistem rata-rata sebesar 90 %, dan bandwith sistem rata-rata sebesar 87,18 %.

Intrusion can damage the web server system. The web server security is usually performed using a firewall, but it is not enough. Firewalls classify data in two conditions, allowing access or not. It is difficult to detect when the legitimate access that goes beyond the authority assign to it. Therefore, the firewall must be refined. We can adding the IDPS to cooperate with firewalls to increase protecting our web server system. Our simulation shows that, when traffic in idle conditions, IDPS return a value of processor system in average of 91.76%, the average of memory system is 71.43%, and the bandwidth system is around 97.4%. In medium traffic conditions, IDPS return a value of processor system in average of 83%, the average of memory system is 89%, and the bandwidth system is around 93.1%. While in high traffic conditions, IDPS return a value of processor system in average of 73%, the average of memory system is 90%, and the bandwidth system is around 87.18%."
Depok: Fakultas Teknik Universitas Indonesia, 2012
T30067
UI - Tesis Open  Universitas Indonesia Library
cover
Jihan Maharani
"Saat ini, penyusupan pada suatu sistem jaringan sering sekali terjadi. Gangguan tersebut dapat dicegah atau dideteksi salah satunya dengan menggunakan Intrusion Detection System. Intrusion Detection System sangat diperlukan untuk melindungi jaringan dan menghalangi serangan. Pada penelitian ini, dibahas pengklasifikasian data Intrusion Detection System menggunakan Multi-Class Support Vector Machine dengan pemilihan fitur Information Gain dengan data yang digunakan yaitu KDD-Cup99. Sebagai hasil, akan dibandingkan nilai akurasi model IDS menggunakan Support Vector Machine dengan dan tanpa pemilihan fitur serta percobaan pengaplikasian model untuk klasifikasi pada data unseen dengan model yang sudah didapat dengan menggunakan 8 fitur dan data training sebesar 80.

Nowadays, the intrusions often occur in a network system. One of ways that Intrusions can be prevented or detected is by using Intrusion Detection System. Intrusion Detection System indispensable to protect the network and to prevent the intrusions. In this paper, the author will discuss about the classification IDS data using Multi Class Support Vector Machine with feature selection using Information Gain and for the data used KDDCup99 Data Set. As a result, it will be compared the accuracy between IDS model using Support Vector Machine with and without feature selection and the application of model has been obtained from the experiment using eight features and 80 data training to unseen data.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Kuni Inayah
"Dengan semakin berkembanganya teknologi dan sistem informasi pada area siber, ancaman siber juga semakin meningkat. Berdasarkan Laporan Honeynet BSSN Tahun 2023, Indonesia menduduki peringkat pertama sebagai negara dengan sumber serangan tertinggi. Untuk mengatasi permasalahan tersebut, IDS dijadikan solusi di berbagai sistem pemerintahan, bekerja sama dengan Honeynet BSSN. Namun, pada sistem IDS ini tidak bekerja secara maksimal untuk melakukan deteksi terhadap anomali atau jenis serangan baru yang belum belum pernah terjadi sebelumnya (zero-day). Solusi untuk meningkatkan performa IDS salah satunya dengan menggunakan machine learning. Beberapa studi sebelumnya membahas tentang perbandingan berbagai algoritma klasifikasi dan didapatkan bahwa algoritma random forest memiliki tingkat akurasi yang tinggi, tingkat false positive yang rendah, dan dalam hal komputasi tidak memerlukan sumber daya yang besar. Oleh karena itu, pada penelitian ini menggunakan algoritma random forest sebagai algoritma klasifikasinya. Dataset yang dipakai menggunakan dataset CIC-ToN-IoT sebagai dataset whitelist dan dataset dari Honeynet BSSN sebagai dataset blacklist. Model diklasifikasikan menjadi 10 (sepuluh) klasifikasi yaitu benign, Information Leak, Malware, Trojan Activity, Information Gathering, APT, Exploit, Web Application Attack, Denial of Service (DoS), dan jenis serangan lainnya (other). Hasil evaluasi menunjukkan bahwa implementasi algoritma random forest dengan dataset CIC-ToN-IoT dan dataset honeynet BSSN memiliki nilai akurasi yang tinggi dalam menganalisis berbagai serangan yang terjadi pada sistem informasi di lingkungan Pemerintah yaitu 99% dan dengan jumlah support data yang besar, model memiliki nilai presisi yang tinggi yaitu 91%.

With the increasing development of technology and information systems in the cyber area, cyber threats are also increasing. Based on the 2023 BSSN Honeynet Report, Indonesia is ranked first as the country with the highest source of attacks. To overcome these problems, IDS is used as a solution in various government systems, in collaboration with Honeynet BSSN. However, this IDS system does not work optimally to detect anomalies or new types of attacks that have never happened before (zero-day). One solution to improving IDS performance is by using machine learning. Several previous studies discussed the comparison of various classification algorithms and found that the random forest algorithm had a high level of accuracy, a low false positive rate, and in terms of computing did not require large resources. Therefore, this research uses the random forest algorithm as the classification algorithm. The dataset used uses the CIC-ToN-IoT dataset as a whitelist dataset and a dataset from Honeynet BSSN as a blacklist dataset. The model is classified into 10 (ten) classifications, namely benign, Information Leak, Malware, Trojan Activity, Information Gathering, APT, Exploit, Web Application Attack, Denial of Service (DoS), and other types of attacks. The evaluation results show that the implementation of the random forest algorithm with the CIC-ToN-IoT dataset and the BSSN honeynet dataset has a high accuracy value in analyzing various attacks that occur on information systems in the government environment, namely 99% and with a large amount of data support, the model has high precision value, namely 91%."
Jakarta: Fakultas Teknik Universitas Indonesia, 2024
T-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dewita Oktavia Nuur Marwan
"Internet of Things (IoT) merupakan sebuah konsep di mana berbagai perangkat komputasi saling terhubung melalui internet dan memiliki kemampuan untuk mengumpulkan atau mengirimkan data. Perluasan dan kecepatan perangkat komputasi menggunakan jaringan Wi-Fi dapat menghasilkan data yang kompleks dan berdimensi tinggi pada sistem IoT. Data yang berdimensi tinggi dapat menimbulkan beberapa kendala dan perangkat IoT akan menghindari untuk melakukan tugas yang komputasinya berat. Semakin kompleksnya sistem IoT, semakin sulit bagi sistem untuk mengidentifikasi dan menemukan serangan siber. Salah satu upaya yang paling umum digunakan untuk melindungi sistem IoT adalah Intrusion detection system (IDS). Pada penelitian ini dilakukan model berbasis machine learning untuk mengembangkan IDS menggunakan dataset AWID2 dengan tipe “CLS” yang berisikan 2 juta lalu lintas trafik pada jaringan WI-Fi yang dikelompokkan ke dalam empat kelas yaitu, normal, impersonation, injection, dan flooding. Random forest merupakan salah satu teknik ensemble atau gabungan dari sejumlah model decision tree yang memiliki keunggulan-keunggulan dibandingkan dengan metode machine learning lainnya, yaitu dapat mencegah terjadinya overfitting, memiliki waktu komputasi yang rendah, dan memiliki kemampuan lebih baik dalam mengelola dataset yang tidak seimbang. Untuk mengatasi data berdimensi tinggi, dilakukan seleksi fitur mutual information pada algoritma random forest untuk mendapatkan hasil model klasifikasi yang optimal. Hasil dari penelitian menunjukkan bahwa metode seleksi fitur mutual information dengan menggunakan 30 fitur terbaik pada algoritma random forest dengan hyperparameter-tuning random search terbukti dapat meningkatkan performa model klasifikasi dan efisiensi waktu jika dibandingkan menggunakan algoritma random forest tanpa seleksi fitur. Nilai metrik yang diperoleh oleh kombinasi tersebut adalah dengan nilai accuracy = 99,95276%, macro average F1-score = 99,76335%, macro average recall = 99,97962%, dan macro average presicion = 99,54935% dengan waktu prediksi 6,112 detik.

The Internet of Things (IoT) is a concept where various computing devices are interconnected via the internet and have the capability to collect or transmit data. The expansion and speed of computing devices using Wi-Fi networks generate complex and high-dimensional data in IoT systems. High-dimensional data in datasets pose several challenges, as IoT devices tend to avoid tasks that are computationally intensive. As IoT systems become more complex, it becomes increasingly difficult for the system to identify and detect cyber attacks. One of the most common efforts to protect IoT systems is the Intrusion Detection System (IDS). In this study, a machine learning-based model is developed to create an IDS using the AWID dataset with the “CLS” type, which contains 2 million network traffic records on Wi-Fi networks categorized into four classes: normal, impersonation, injection, and flooding. Random forest is an ensemble technique or a combination of multiple decision tree models that has advantages over other machine learning methods, such as preventing overfitting, having low computational time, and having better capabilities in handling imbalanced datasets. To address high-dimensional data, mutual information feature selection is applied to the random forest algorithm to achieve optimal classification model results. The results of the study indicate that the mutual information feature selection method using the top 30 features in the random forest algorithm with random search hyperparameter tuning can improve the performance of the classification model and time efficiency compared to using the random forest algorithm without feature selection. The metrics obtained by this combination are accuracy = 99.95276%, macro average F1-score = 99.76335%, macro average recall = 99.97962%, and macro average precision = 99.54935% with a prediction time of 6.112 seconds."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library