Ditemukan 4 dokumen yang sesuai dengan query
UI-IJTECH 5:2 (2014)
Artikel Jurnal Universitas Indonesia Library
UI-IJTECH 5:2 (2014)
Artikel Jurnal Universitas Indonesia Library
Frida Octavia Purnomo
Abstrak :
ABSTRAK
Sel QD-CdS-SSC termodifikasi terdiri dari dua zona yaitu zona QD-CdS-SSC dan zona katalitik. Zona QD-CdS-SSC berfungsi sebagai penangkap sinar, sedangkan zona katalitik merupakan tempat terjadinya reaksi katalitik untuk produksi hidrogen. Zona QD-CdS-SSC terdiri dari semikonduktor TiO2 yang disensitasi dengan CdS, larutan elektrolit polisulfida dan counter elektroda platina yang dilapiskan pada permukaan gelas berpenghantar dan transparan yaitu FTO Flour Tin Oxide . Plat titanium digunakan sebagai template untuk TiO2 nanotubes. Pada zona katalitik, untuk kepentingan reduksi H menjadi H2, platina dideposisikan pada permukan titanium. Pengujian produksi hidrogen dilakukan dengan irradiasi sinar visible pada zona QD-CdS-SSC dan counter elektroda BiVO4. Intensias lampu visible yang digunakan adalah 110 mW/cm2 dan 90 mW/cm2. Counter elektroda dengan zona QD-CdS-SSC dihubungkan dengan kawat tembaga. Larutan yang digunakan pada zona katalisis adalah 12,5 metanol dalam air. BiVO4 yang digunakan sebagai counter elektroda dalam sistem QD-CdS-SSC mampu menghasilkan hidrogen pada intensitas 110 mW/cm2 dan 90 mW/cm2 masing-masing sebesar 320,734 mol dan 20,872 mol.
ABSTRACT
Modified QD CdS SSC has been successfully applied for hydrogen production. Modified QD CdS SSC cell consists of two zones there are QD CdS SSC and catalytic zone. QD CdS SSC zone serves to absorb light, while the catalytic zone is operate as the catalytic reaction site for hydrogen production. QD CdS SSC zone consists of TiO2 nanotubes sensitized by CdS immobilized on Ti plate, polysulfide electrolyte solution and platinum as counter electrode that is coated on the surface of FTO glass. Reduction of H to H2 occur on the platinum coated titanium at catalytic zone. Hydrogen production was performed by visible light irradiation on the QD CdS SSC zone and the counter electrode BiVO4 as well. The intensity of the visible light used was 110 mW cm2 and 90 mW cm2. Counter electrode and QD CdS SSC zone were connected by copper wire. The solution used in the catalytic zone in this study was 12.5 methanol in water. QD CdS SSC is able to produce hydrogen at an intensity of 110 mW cm2 and 90 mW cm2. Total hydrogen production at an intensity of 110 W cm2 and 90 mW cm2 were 320.734 mol and 20.872 mol respectively.
2017
T48293
UI - Tesis Membership Universitas Indonesia Library
Muhammad Syahrial Akbar
Abstrak :
ABSTRAK
Hidrogen banyak diproduksi oleh teknologi modern seperti steam reforming, oksidasi parsial dan metode gasifikasi batubara. Namun, proses ini memanfaatkan bahan bakar fosil sebagai bahan baku mereka, yang dapat menyebabkan penipisan pada bahan bakar fosil secara global. Dari situasi ini, permintaan untuk menciptakan metode alternatif dalam memproduksi hidrogen menjadi meningkat. Siklus termokimia sulfur-iodin S-I adalah salah satu metode alternatif untuk memproduksi hidrogen. Ini adalah metode yang menarik untuk menghasilkan hidrogen tanpa menggunakan bahan bakar fosil sebagai bahan baku dan memproduksi emisi gas rumah kaca. Pada siklus termokimia S-I, bagian dekomposisi HI memiliki sistem dinamis yang kompleks karena suhu proses yang tinggi yang terlibat dan adanya molekul azeotrop homogen dalam fase Hix. Dalam penelitian ini, simulasi dinamika melalui strategi Model Predictive Control diimplementasikan untuk mengontrol proses siklus termokimia S-I. Kemudian, kinerja Model Predictive Control diperiksa dan dibandingkan dengan strategi Proportional Integral Derivative dalam hal set point tracking dan disturbance rejection. Berdasarkan hasil, strategi Model Predictive Control menunjukkan kinerja yang lebih baik dibandingkan dengan strategi kontrol Proportional Integral Derivative.
ABSTRACT
Hydrogen is widely produced by advanced technologies such as steam reforming, partial oxidation and coal gasification method. However, these processes utilize fossil fuels as their feedstock, which can cause the depletion on fossil fuels globally. From this situation, the demand for creating alternative methods of producing hydrogen has been emphasized. The sulfur iodine S I thermochemical cycle is one of the alternative methods for producing hydrogen. It is an attractive method to produce hydrogen without using fossil fuels as the feedstock and producing emission of any greenhouse gas. In the S I thermochemical cycle, HI decomposition section has complex dynamic systems due to the high process temperature involved and the presence of a homogenous azeotrope in the HIx phase. In this research, the dynamic simulation through the design of Model Predictive Control strategy were implemented to control the process of S I thermochemical cycle. Then, the performance of the Model Predictive Control was examined and compared with the Proportional Integral Derivative control strategy in terms of set point tracking and disturbance rejections. Based on the results, Model Predictive Control strategy has presented better performance as compared to the Proportional Integral Derivative control strategy.
2016
S66737
UI - Skripsi Membership Universitas Indonesia Library