Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 9 dokumen yang sesuai dengan query
cover
Ahmad Nabil Faiz Hidayat
Abstrak :
Magnesium telah dikembangkan sebagai material untuk implan tulang yang mampu luruh karena memiliki kemiripan nilai modulus elastisitas dengan tulang. Namun magnesium memiliki ketahanan korosi dan kekuatan yang terlalu rendah. Pada penelitian kali ini, ditambahkan gadolinium untuk meningkatkan ketahanan korosinya, dan dilakukan pencanaian untuk meningkatkan kekuatannya karena penghalusan butir. Pencanaian dingin menghasilkan butir yang halus. Namun, karena magnesium memiliki sifat yang mampu membentuk yang buruk, maka dilakukan canai hangat dengan suhu 247-375. Karakterisasi dilakukan menggunakan Mikroskop Optik, Scanning Electron Microscope (SEM) dan Energy Dispersive Spectrometry (EDS). Mekanisme korosi Mg-Gd diamati menggunakan pengujian Polarisasi dan Electrochemical Impedance Spectroscopy (EIS) dalam larutan SBF Kokubo untuk mensimulasi kondisi tubuh. Hasil pengujian polarisasi menyatakan bahwa sampel pencanaian menyilang memiliki nilai E yang tinggi dengan 0,15 dan -0,048 V sehingga menjadi sampel yang paling sulit untuk mengalami reaksi korosi. Hal ini disebabkan oleh lebih meratanya persebaran Gd pada pencanaian menyilang. Namun pengujian EIS menyatakan sampel pencanaian searah memiliki nilai tahanan lapisan pasif yang lebih tinggi. Hal ini disebabkan oleh ukuran butir pencanaian searah cenderung lebih kecil, yang menyebabkan ruang tegangan kompresi sehingga lapisan pasif yang terbentuk lebih kuat dengan 116 dan 126. Pembentukan gas Hidrogen juga diamati menggunakan pengujian Imersi.
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Putri Permata Puspita Dewi
Abstrak :
Pada penelitian ini dilakukan sintesis nanokomposit NiFe2O4 mesopori dengan MWCNT sebagai elektrokatalis dalam reaksi evolusi hidrogen. Berdasarkan hasil karakterisasi FTIR, XRD, Raman, TEM, SEM, dan BET menunjukkan NiFe2O4 mesopori, MWCNT, dan NiFe2O4 mesopori/MWCNT telah berhasil disintesis. Material-material hasil sintesis ini kemudian didepositkan pada permukaan elektroda glassy carbon (GCE) dan perilaku elektrokimianya diuji dengan teknik LSV, ECSA, EIS dan kronoamperometri. Pengujian menggunakan teknik LSV menunjukkan bahwa nilai onset potensial, overpotensial, dan tafel slope GCE/NiFe2O4 mesopori/MWCNT lebih kecil di bandingkan GCE/NiFe2O4 mesopori dan GCE/MWCNT. Hasil ini berkolerasi dengan uji ECSA yang menunjukkan bahwa GCE/NiFe2O4 mesopori/MWCNT memiliki luas permukaan yang paling tinggi sebesar 38,75 cm2.  Sedangkan pengujian dengan teknik EIS menunjukkan bahwa nilai hambatan transfer muatan (R
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nasution, Athallah Ghiffary
Abstrak :
Meningkatnya penggunaan bahan bakar fosil telah membawa dampak yaitu peningkatan emisi karbon dioksida. Salah satu cara untuk mengatasi masalah ini adalah dengan mencari energi alternatif pengganti bahan bakar fosil. Salah satu dari energi alternatif itu adalah hidrogen. Hidrogen memiliki kapasitas penyimpanan yang besar dengan penggunaan yang relatif lebih aman dan ramah lingkungan. Namun produksi hidrogen dalam skala besar masih sulit dilakukan. Salah satu metode pembentukan hidrogen adalah dengan elektrolisis air. Hidrogen terbentuk melalui reaksi evolusi hidrogen yang terjadi pada katoda. Namun prosesnya memerlukan energi yang cukup besar, sehingga dibutuhkan sebuah katalis untuk membantu jalannya reaksi. Salah satu kandidat sebagai katalis adalah material 2 dimensi yang disebut MXene. MXene dinilai sebagai kandidat yang bagus dikarenakan permukaannya hidrofilik dan mempunyai konduktivitas yang baik. Untuk meningkatkan aktivitas katalititk dari MXene, digunakan prekursor logam perak untuk fabrikasi nanokomposit MXene/Ag melalui metode reduksi. Penelitian ini berhasil mensintesis nanokomposit MXene/Ag dengan beberapa variasi jumlah Ag. Nanokomposit MXene/Ag yang dihasilkan telah dikarakterisasi dengan XRD, FTIR, TEM, SEM dan SEM EDX. Hasil pengujian menunjukkan nanokomposit MXene/Ag mengalami perubahan sifat fisika dan kimia, seperti perubahan warna, peningkatan konduktivitas dan aktivitas katalitik. ......The increasing use of fossil fuels has led to an increase in carbon dioxide emission. One way to solve this problem is to find alternative energy to replace fossil fuels. One of those alternative energies is hydrogen. Hydrogen has a large storage capacity with relatively safer and environmentally safe to use. However, hydrogen production on a large scale is difficult to do. One method of hydrogen formation is by water electrolysis. Hydrogen is formed through the hydrogen evolution reaction that occurs at the cathode. However, due to the process that uses a large amount of energy, a catalyst is needed to help the reaction. One of the candidates as a catalyst is a 2-dimention material called MXene. MXene is considered a good candidate due to its hydrophilic surface with good conductivity. To increase the catalytic activity of MXene, silver precursor was used as a precursor to fabricate MXene/Ag nanocomposite through reduction. Based on the results, the synthesis of MXene/Ag nanocomposite by reduction can be done with optimal results. The test results showed that MXene/Ag nanocomposites experienced changes in physical and chemical properties, such as change in color, increased conductivity and catalytic activity.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ananda Hinsa Marintan
Abstrak :
Saat ini penggunaan bahan bakar fosil sedemikian besarnya dan permintaan energi terus meningkat, namun keterbatasan bahan bakar fosil, dampak lingkungan yang dihasilkan dari pembakaan bahan bakar fosil, pengembangan teknologi penghasil energi yang bersih dan berkelanjutan menjadi sangat penting. Hidrogen adalah salah satu energi yang potensial untuk pengganti bahan bakar fosil dan merupakan energi alternatif untuk masa depan, karena ramah lingkungan dan dapat menghasilkan enenrgi yang cukup besar. Reaksi evolusi hidrogen dengan teknik elektrolisis AWE (alkaline water electrolysis) merupakan teknik yang populer saat ini untuk menghasilkan hydrogen. Penelitian ini telah berhasil mensintesis MoS2 dan komposit MoS2/Ag, serta telah dikarakterisasi dengan FTIR, XRD, FESEM, dan TEM. Fabrikasi elektroda GCE/MoS2/Ag dan uji aktivitas elektrokatalitiknya menggunakan teknik LSV, ECSA, dan CV, juga telah dilakukan. Melalui hasil pengujian Linear Sweep Voltammetry (LSV) diperoleh bahwa komposit MoS2/Ag memiliki nilai onset dan overpotensial yang paling mendekati Pt wire sebagai benchmark, yaitu 123 mV dan 253 mV. Hal ini membuktikan bahwa dekorasi MoS2 dengan Ag sudah berhasil untuk meningkatkan aktivitas katalitik dan konduktivitasnya. Melalui uji Electrochemically Active Surface Area (ECSA) diperoleh luas permukaan aktif yang paling tinggi pada nanokomposit MoS2/Ag. Berdasarkan uji kronoamperometri diketahui MoS2/Ag selama 9000 detik menghasilkan komposit yang cukup stabil sebagai elektrokatalis reaksi evolusi hidrogen. ......Currently, the use of fossil fuels is so enormous, and the demand for energy continues to increase. But the limitations of fossil fuels, the environmental impact resulting from burning fossil fuels, and the development of clean and sustainable energy-producing technologies are very important. Hydrogen is a potential energy to replace fossil fuels and is an alternative energy for the future because it is environmentally friendly and can produce quite a large amount of energy. Hydrogen evolution reaction with the AWE electrolysis technique (alkaline water electrolysis) is a popular technique today to produce hydrogen. This research has succeeded in synthesizing MoS2 and MoS2/Ag composites and have characterized by FTIR, XRD, FESEM, and TEM. GCE/MoS2/Ag electrode fabrication and electrocatalytic activity tests using LSV, ECSA, and CV techniques have also carried out. Through the LSV test results, it was found that the MoS2/Ag composite had onset and overpotential values closest to Pt wire as a benchmark, namely 123 mV and 253 mV. Prove that decorating MoS2 with Ag has succeeded in increasing its catalytic activity and conductivity. Through the Electrochemically Active Surface Area (ECSA) test, the highest active surface area was obtained on the MoS2/Ag composite. Based on the chronoamperometric test, it is known that MoS2/Ag for 9000 seconds produces a fairly stable composite as an electrocatalyst for the hydrogen evolution reaction.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Abdullah Muiz
Abstrak :
Energi hidrogen dianggap menjadi salah satu sumber energi yang menjanjikan. Bahan bakar hidrogen memiliki banyak kelebihan seperti kapasitas penyimpanan, efisiensi, pembaruan, kebersihan, emisi nol, dan sumber menjadikannya pilihan yang sangat baik sebagai pasokan energi untuk panas dan listrik. Dengan menggunakan teknik alkaline water electrolysis untuk mengubah air menjadi hidrogen dan oksigen. Nanokomposit MoS2/CuO menjadi elektrokatalis yang meningkatkan nilai konduktifitas dan nilai aktivitas yang tinggi untuk reaksi evolusi hidrogen (HER). Pada penelitian ini dilakukan sintesis MoS2/CuO dan dianalisis dengan karakterisasi TEM, SEM, XRD, dan spektroskopi raman. Didapatkan hasil dari karakterisasi masing-masing senyawa prekursor dan komposit berhasil disintesis. Fabrikasi elektroda MoS2/CuO dilakukan dengan elektroda GCE/MoS2 dan GCE/MoS2/CuO untuk diuji aktivitas elektrokatalitik menggunakan LSV diperoleh nilai onset potential, overpotential dan tafel slope GCE/MoS2/CuO memiliki nilai yang mendekati Pt. Kemudian dilakukan uji EIS dan diperoleh nilai hambatan GCE/MoS2/CuO sebesar 483 Ω. Kemudian dilakukan uji CV untuk memperoleh nilai ECSA diperoleh nilai paling tinggi adalah GCE/MoS2/CuO. GCE/MoS2/CuO juga memiliki kestabilan yang baik dengan melakukan uji kronoamperometri selama 9000 detik. ......Hydrogen energy is considered a promising energy source, offering advantages such as storage capacity, efficiency, renewability, cleanliness, zero emissions, and versatility, making it an excellent choice for heat and electricity supply. Alkaline water electrolysis is utilized to convert water into hydrogen and oxygen. A nanocomposite of MoS2/CuO serves as an electrocatalyst, enhancing conductivity and exhibiting high activity for the hydrogen evolution reaction (HER). In this research, MoS2/CuO synthesis was conducted and analyzed through TEM, SEM, XRD, and Raman spectroscopy characterizations. Successful synthesis results were obtained for the precursor and composite compounds. MoS2/CuO electrode fabrication involved GCE/MoS2 and GCE/MoS2/CuO electrodes, and their electrocatalytic activity was tested using LSV. The GCE/MoS2/CuO exhibited onset potential, overpotential, and tafel slope values close to Pt. EIS testing revealed a resistance value of 483 Ω for GCE/MoS2/CuO. CV testing was performed to determine ECSA, with GCE/MoS2/CuO achieving the highest value. Additionally, GCE/MoS2/CuO demonstrated good stability during chronoamperometry testing over 9000 seconds.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Putri Safa Izhara
Abstrak :
Peningkatan populasi dan standar hidup manusia memicu kebutuhan akan energi sebagai bahan bakar. Pada zaman ini penggunaan bahan bakar fosil telah mencapai 85% menyebabkan peningkatan pada pemanasan global dan emisi gas rumah kaca yang berdampak buruk terhadap perubahan iklim dan atmosfer bumi. Energi terbarukan merupakan inovasi yang krusial untuk menangani masalah tersebut. Energi hidrogen merupakan salah satu bentuk energi terbaharukan, memiliki keunggulan karena bersih dan ketersediaannya yang melimpah di alam. Karena keunggulannya hidrogen berpotensi untuk menggantikan bahan bakar fosil serta kemampuan hidrogen dalam menghasilkan energi dengan nol emisi karbon menjadi perhatian masyarakat. Salah satu metode untuk memproduksi hidrogen dengan metode elektrokimia untuk pemecahan air. Untuk meningkatkan kinerja katalis pada proses elektrokimia menggunakan logam mulia. Meskipun logam mulia memiliki stabilitas dan kinerja katalis yang baik terdapat keterbatasan ketersediannya dan biayanya yang tinggi. Sebagai alternatif, dapat digunakan transition metal dichalcogennides (TMDCs) seperti MoS!. Dari permasalahan ini kami telah berhasil melakukan penelitian untuk menumbuhkan MoS! diatas kain karbon dengan metode hidrotermal selama 8 jam dengan suhu 200°C. MoS! diberi perlakuan annealing dengan suhu 200°C selama 1 jam untuk meningkatkan performa katalis pada proses elektrokimia. Perfoma katalis dapat dibuktikan dengan tegangan onset yang rendah dari linear sweep voltammetry (LSV). MoS! yang diberi perlakuan annealing menghasilkan tegangan onset 128 mV yang rendah dibandingkan dengan MoS! yang memiliki tegangan onset 178 mV. Hal ini juga didukung dengan hasil fasa 2H MoS! yang terbentuk dari MoS!/CC-200. ......The increase in population and human living standards has led to a growing demand for mau as fuel. In this era, the use of fossil fuels has reached 85%, causing an increase in global warming and greenhouse gas emissions that adversely affect climate change and the Earths atmosphere. Renewable energy is a crucial innovation to address these issues. Hydrogen mau is one form of renewable mau, with the advantage of being clean and abundantly available in nature. Due to its benefits, hydrogen has the potential to replace fossil fuels, and its ability to produce mau with zero carbon emissions has garnered attention from the public.One method for hydrogen production is through electrochemical water splitting. To enhance the catalysts performance in the electrochemical process, noble metals are commonly used. However, the limited availability and high cost of noble metals pose constraints. As an alternative, transition metal dichalcogenides (TMDCs) like MoS! can be employed. To address these challenges, we conducted research to grow MoS! on carbon cloth through a hydrothermal method for 8 hours at a temperature of 200°C. Subsequently, the MoS!!underwent annealing at 200°C for 1 hour to improve the catalysts performance in the electrochemical process.The catalysts performance was assessed by measuring the onset voltage using linear sweep voltammetry (LSV). MoS! treated with annealing exhibited a low onset voltage of 128 mV, compared to untreated MoS!with an onset voltage of 178 mV. This improvement is further supported by the formation of the 2H phase in MoS!/CC-200. The study demonstrates the potential of treated MoS! as an effective catalyst for electrochemical processes, offering a promising avenue for sustainable and cost-effective hydrogen production.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sherly Kasuma Warda Ningsih
Abstrak :
Penggunaan energi matahari untuk produksi hidrogen dari air dapat menjadi alternatif yang potensial untuk mengatasi masalah keberlanjutan pasokan energi dan pengurangan pencemaran lingkungan. Sistem tandem dyes sensitized solar cell-photoelectrocatalytic (DSSC-PEC) berpotensi dikembangkan menjadi salah satu perangkat pemanen sinar matahari untuk produksi hidrogen (Solar to hydrogen). Dalam sistem tandem tersebut bagian PEC sebagai tempat terjadinya reaksi pemecahan air, sedangkan bagian DSSC berfungsi sebagai salah satu penyedia tegangan insitu dan elektron aktif bagi sel PEC. Material TiO2 nanotube arrays (TNAs) merupakan material satu dimensi (1D) yang memiliki sifat fotokatalitik yang superior dan luas permukaan spesifik yang besar, serta channel 1D yang kondusif dalam transpor muatan. TNAs telah dipreparasi menggunakan metode two step anodization dengan meningkatkan potensial anodisasi tahap dua pada potensial sedang. Plat Ti digunakan sebagai working electrode dan stainless steel digunakan sebagai counter electrode. Elektrolit yang digunakan adalah etilen glikol yang mengandung 0,3% w/w NH4F dan 2% v/v H2O. Hasil anodisasi tahap satu dihilangkan dengan sonikasi dalam air distilasi selama 20 menit dan plat ini berperan sebagai template untuk anodisasi tahap dua. Hasil anodisasi yang diperoleh pada tahap dua dikalsinasi pada suhu 450° C selama 2 jam untuk merubah fasa amorf menjadi fasa kristalin. Band gap energy dari TNAs yang dipreparasi dengan metode two step yakni sekitar 3,07-3,31 eV. Morfologi permukaan TNAs yang dihasilkan berbentuk heksagonal (honey comb). Peningkatan potensial anodisasi pada tahap dua menghasilkan TNAs yang highly order dengan durasi pembentukan yang relatif lebih singkat dengan nilai regularity ratio (RR) optimum 0,92. Agar lebih responsif terhadap sinar tampak, TNAs dimodifikasi dengan BiOI (bismuth oxyiodide) dengan metode Successive Ionic Layer Adsorption and Reaction (SILAR) dengan bantuan ultrasonikasi dan pemanasan menggunakan pelarut air distilasi dan pelarut sorbitol. BiOI/TNAs hasil modifikasi responsif terhadap sinar tampak pada rentang 450-580 nm (redshift) dengan nilai band gap sekitar 1,90 eV-2,32. Morfologi permukaan BiOI/TNA yang dihasilkan yakni bentuk nanoplate, nanoflake, dan nanosheet dengan orientasi tegak lurus pada matriks TiO2 nanotubes. Modifikasi BiOI pada TNAs tidak mengubah fasa kristal anatase. Fotoanoda Graphene Oxide (GO)/TNAs dan reduced-Graphene Oxide (rGO)/TNAs dipreparasi menggunakan teknik drop casting dan teknik deposisi Cyclic Voltammetry (CV), berturut-turut. Modifikasi TNAs dengan material GO ini berhasil menggeser serapan pada sinar tampak (430 nm). Material GO atau rGO/TNAs ini dimodifikasi dengan BiOI untuk mendapatkan fotoanoda ternary yang memiliki respon fotoelektrokimia yang lebih tinggi. BiOI/TNAs dan ternary BiOI/GO/TNAs digunakan sebagai fotoanoda pada zona PEC. Sementara itu, pada bagian katoda PEC digunakan TNAs yang dimodifikasi dengan Pt yang dipreparasi dengan metode fotoreduksi, sebagai zona katalis untuk pembentukan hidrogen. Pengembangan bagian DSSC digunakan fotoanoda TNAs yang disensitasi dengan N719 dyes dan bagian katodanya digunakan kaca Fluorine-doped Tin Oxide (FTO) yang dilapisi dengan Pt. Efisiensi DSSC N719 dyes/TNAs optimum yang didapat sekitar 5,23%. Perangkat DSSC dan PEC ini diaplikasikan untuk produksi hidrogen menghasilkan persen solar to hydrogen (STH) sekitar 2,56%. Saat diaplikasikan untuk produksi hidrogen dan degradasi fenol secara simultan dengan persen solar to hydrogen (STH) turun menjadi 1,34%, namun mampu mendegradasi fenol hingga 73,74%. Dari hasil studi ini menunjukkan bahwa sistem DSSC-PEC dengan fotoanoda bagian PEC berupa BiOI/TNAs atau BiOI/rGO/TNAs memiliki potensi yang menjanjikan secara simultan untuk produksi hidrogen dan degradasi zat organik dalam air berkadar garam tinggi. ...... The solar energy utilization for hydrogen production from water can be a potential alternative to address the problem of sustainability of energy supply and reduction of environmental pollution. The tandem dyes-sensitized solar cell-photoelectrocatalytic (DSSC-PEC) system can potentially be developed into one of the solar harvesting devices for hydrogen production (Solar to hydrogen). In this tandem system, the PEC compartment acts as a site for the water-splitting reaction, while the DSSC part provides insitu voltage and active electrons for the PEC cell. TiO2 nanotube arrays (TNAs) are one-dimensional (1D) with a superior photocatalytic high surface area and one dimension channel conducive to charge transport. TNAs have been prepared using a two-step anodization method by increasing the second-step voltages at moderate voltage. The Ti foil and stainless steel were used as the working and counter electrodes, respectively. The ethylene glycol containing 0.3% w/w of NH4F and 2% v/v H2O was used as the electrolyte. The first anodization result was removed by the ultrasonication process in the distilled water for 20 min, and this foil acted as the template for the second step of anodization. The second anodization product was calcined at 450° C for 2 h to convert the amorphous phase into a crystalline phase. Increasing the second step potential for producing TNAs with a highly ordered structure can improve the PEC properties. The band gap energy of TNAs prepared with the two-step anodization method was 3.07-3.31 eV. The surface morphology of TNAs prepared by the two-step anodization method was hexagonal (honeycomb). The increasing voltage in the second anodization step reveals TNAs with high order and short-duration of TNAs production with a regularity ratio (RR) was 0.92. In order to extend absorption in the visible range, TNAs were modified with BiOI (bismuth oxy iodide) by Successive Ionic Layer Adsorption and Reaction (SILAR) with ultrasonication and heat-assisted by using deionized water and sorbitol solvent. Modified BiOI/TNAs were responsive to visible light in the 450-580 nm (redshift) range, with a band gap energy of 1.90 - 2.32 eV. The BiOI/TNAs morphology was nanoplate, nanoflake, and nanosheet perpendicular to TiO2 nanotube matrices. The modification of BiOI on TNAs did not change the anatase crystal phase. The photoanode of Graphene oxide (GO)/TNAs and reduced-Graphene Oxide (rGO)/TNAs were prepared by Drop Casting and Cyclic Voltammetry (CV) deposition, respectively. The TNAs were modified with GO material and succeeded in shifting the absorption in visible light (430 nm). The GO/TNAs and the rGO/TNAs were modified with BiOI to produce a ternary photoanode with a higher photoelectrochemical response. The BiOI/TNAs and BiOI/GO/TNAs ternaries were used as photoanodes in the PEC zone. Meanwhile, at the PEC cathode, TNAs modified with Pt prepared by the photoreduction method were used as catalyst zone for the hydrogen formation. The development of DSSC using TNAs photoanode that were sensitized with N719 dyes and for the cathode used Fluorine-doped Tin Oxide (FTO) glass modified with Pt. The optimum efficiency of DSSC was 5.23%. The DSSC and PEC devices were applied for hydrogen production to produce solar to hydrogen (STH) of around 2.56 %. When applied to hydrogen production and phenol degradation simultaneously, the percentage of solar to hydrogen (STH) decreased to 1.34% but degraded phenol up to 73.74%. The results of this study reveal that the DSSC-PEC system with PEC photoanodes in the form of BiOI/TNAs or BiOI/rGO/TNAs has a promising potential for simultaneous hydrogen production and degradation of organic substance in salty water.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
D-Pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Safira Razak
Abstrak :
Elektrokatalitik water splitting diketahui merupakan teknologi yang menjanjikan untuk produksi hidrogen dan oksigen yang menyediakan energi bersih yang terjangkau dan mengurangi ketergantungan pada bahan bakar fosil. Elektrokatalis digunakan untuk meningkatkan laju reaksi elektrokimia reaksi evolusi hidrogen (HER) dan reaksi evolusi oksigen (OER). Dibandingkan dengan logam mulia lain, Platinum (Pt) merupakan elektrokatalis HER yang paling efisien dan stabil dalam elektrolit asam atau basa. Studi literatur menunjukkan efisiensi elektrokatalitik dari bahan platinum berstruktur nano sangat dipengaruhi oleh bentuk, ukuran, dan bidang kristal permukaannya. Untuk itu dalam penelitian ini dilakukan sintesis partikel Pt diatas substrat ITO dengan metode elektrodeposisi mode Square-Wave Pulse (SWP) dengan variasi larutan elektrolit dengan KCl dan KCl + H2SO4 untuk mendapatkan bentuk dan bidang kristal tertentu di permukaan. Hasil penelitian menunjukkan bahwa pertumbuhan partikel Pt dipegaruhi oleh adanya ion-ion elektrolit asam sulfat (H2SO4), yaitu HSO4- dan SO42- yang mendorong pembentukan partikel anisotropik, yaitu berbentuk bulat dengan duri runcing yang berbentuk seperti kelopak bunga (flower-like). Sedangkan elektrolit KCl saja hanya menghasilkan partikel Pt dengan kecenderungan berbentuk bulat (sphere). Pt MF menunjukkan kinerja katalitik HER yang lebih baik dimana overpotential dan kemiringan yang lebih rendah daripada Pt MS. Hal tersebut mungkin disebabkan adanya bidang berindeks tinggi yaitu bidang (220) dan (311) pada Pt MF yang berkerja sebagai situs aktif yang dapat memutus rantai ikatan senyawa. Sedangkan Pt MS dominan memiliki bidang kristal (100) dan (002) yang lebih baik untuk meningkatkan aktivitas katalitik OER.
Electrocatalytic water splitting is considered as a promising technology for the production of hydrogen as affordable clean energy and reduces dependence on fossil fuels. Electrocatalysts used to increase the electrokinetics reaction of hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Compared to other noble metals materials, Platinum (Pt) is the most efficient and stable HER electrocatalyst in acid or alkaline electrolytes. Literature studies show the electrocatalytic efficiency of nanostructured Pt influenced by the shape, size, and surface crystal facets. For this reason, this research carried out the synthesis of Pt particles on the ITO-coated glass substrate using the Square-Wave Pulse (SWP) mode electrodeposition method with two variations in the electrolyte solution, namely KCl and KCl + H2SO4 to obtain certain crystal facets on the surface. The results show that the growth of Pt particles was affected by the presence of sulfuric acid electrolyte ions (HSO4- and SO42-) promoting the formation of anisotropic particles, which is flower-like particles, while the single electrolytes KCl only produces Pt particles with a spherical shape. Pt MFs shows a better catalytic performance of HER, where overpotential and slope are lower than Pt MSs. That might be due to high index facets (220) and (311), which work as active sites that can break the bonding chains of compounds. Meanwhile, the crystal facets of Pt MSs are dominated by (100) and (002) facets which are better for the catalytic activity of OER.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Michael Lesa
Abstrak :
Pada era revolusi industri ini, kebutuhan energi selalu meningkat. Sebagian besar kebutuhan energi ini dicukupi menggunakan bahan bakar fosil yang merupakan penyumbang emisi gas CO2. Hidrogen merupakan salah satu alternatif yang dapat menggantikan bahan bakar fosil karena densitas gravimetriknya yang tinggi. Produksi hidrogen bebas emisi dapat dilakukan melalui proses elektrolisis air alkali yang memanfaatkan suatu elektrokatalis. Salah satu elektrokatalis potensial adalah NiFe2O4 berpori yang memiliki kemampuan elektrokatalisis lebih baik jika terintegrasi dengan MXene sebagai substrat konduktif. Pada penelitian ini dilakukan sintesis NiFe2O4 nanopori menggunakan SBA-15 sebagai hard template dengan metode nanocasting sedangkan sintesis MXene dilakukan melalui metode etching dan eksfoliasi. Kemudian dilakukan preparasi nanokomposit MXene/NiFe2O4 nanopori menggunakan metode hidrotermal. Dari hasil karakterisasi XRD, TEM, dan Raman, terlihat bahwa masing-masing senyawa prekursor komposit maupun nanokomposit MXene/NiFe2O4 nanopori telah berhasil disintesis. Lalu berdasarkan karakterisasi BET, terlihat bahwa komposit yang dipreparasi memiliki luas permukaan lebih tinggi (176,678 m2/g) dibandingkan MXene (77,946 m2/g) dan m-NiFe2O4 (102,395 m2/g). Senyawa -senyawa yang telah dipreparasi lalu diuji secara elektrokimia melalui uji LSV, ECSA, EIS dan kronoamperometri. Pengujian LSV menunjukkan komposit yang dipreparasi memiliki nilai onset potential serta overpotential paling kecil dibandingkan m-NiFe2O4 dan MXene yang menunjukkan komposit yang dipreparasi memiliki performa reaksi evolusi hidrogen paling baik. Melalui uji ECSA, diperoleh luas permukaan aktif paling tinggi pada komposit. Kemudian berdasarkan uji EIS diketahui komposit m-NiFe2O4/MXene memiliki hambatan transfer muatan sebesar 338 kΩ. Lalu berdasarkan uji stabilitas, diketahui bahwa elektroda GCE/ NiFe2O4/MXene memiliki stabilitas yang cukup baik bahkan setelah 1000 siklus CV serta uji kronoamperometri jangka panjang dengan efisiensi faraday hidrogen yang dihasilkan sebesar 0,022%. ......In the era of industrial revolution, energy demand is always increasing. Most of this energy need are fulfilled using fossil fuels which are a contributor to CO2 gas emissions. Hydrogen is one of the alternatives that can replace fossil fuels because of its high gravimetric density. Emission-free hydrogen production can be carried out through an alkaline water electrolysis process utilizing an electrocatalyst. One of the potential electrocatalysts is the porous NiFe2O4 which has better electrocatalytic ability when integrated with MXene as a conductive substrate. In this study, nanoporous Ni-Fe2O4 was synthesized using SBA-15 as a hard template with nanocasting method while MXene was synthesized via etching and exfoliation method. The preparation of nanoporous MXene/NiFe2O4 nanocomposite was carried out using the hydrothermal method. From the results of XRD, TEM, and Raman characterization, it can be seen that each composite precursor compound and the composite itself has been successfully synthesized. Then based on the BET characterization, it was seen that the prepared composite had a higher surface area (176.678 m2/g) than MXene (77.946 m2/g) and m-NiFe2O4 (102.395 m2/g). The compounds that have been prepared were then tested electrochemically through LSV, ECSA, EIS and chronoamperometric tests. The LSV test showed that the prepared composite had the smallest onset potential and overpotential values compared to m-NiFe2O4 and MXene, which indicated that the prepared composite has the best hydrogen evolution reaction performance. Through the ECSA test, the highest active surface area was obtained in the composite. Then based on the EIS test, it is known that the NiFe2O4/MXene composite has charge transfer resistance of 338 kΩ. Then based on the stability test, it was found that the GCE/m-NiFe2O4/MXene electrode had good stability even after 1000 CV cycles and long time chronoamperometric tests with 0,022% faradaic efficiency.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library