Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 20 dokumen yang sesuai dengan query
cover
Wildan Baina Iedai El Islami
Abstrak :
Pengembangan terhadap energi hidrogen tengah tumbuh pesat belakangan ini karena sumber energi hijau menjadi jauh lebih penting di berbagai industri dan mampu menggantikan natural gas dimasa mendatang. Negara - negara di berbagai belahan dunia telah mulai mengembangkan energi hidrogen secara masif seperti Jepang, Korea, Italia, Spanyol, Arab Saudi, Cina, Turki dan Maroko dengan metoda elektrolisis dari sumber energi terbarukan dengan biaya produksi yang cukup kompetitif. Biaya produksi hidrogen yang telah dikembangkan dengan metoda elektrolisis ini di Turki USD 3,1 $/kgH2, Korea Selatan USD 7,72 $/kgH2, Italy 6,9 €/kgH2, Arab Saudi 43,1 $/kgH2 dan Maroko 4,99 $/kgH2. Oleh karena itu, diperlukan penelitian pengembangan produksi green hydrogen di Indonesia dengan metoda elektrolisis dari floating solar photovoltaic di Waduk Cirata. Metoda penelitian dimulai dengan pemilihan teknologi green hydrogen plant dengan membandingkan spesifikasi elektroliser yang tersedia dipasaran melalui skema “scoring”. Selanjutnya dilakukan analisa keekonomian melalui tiga skema excess power yaitu 20%, 30% dan 40% dari energi listrik yang tersedia pada floating solar photovoltaic. Analisa keekonomian dilakukan dengan menghitung nilai Net Present Value (NPV), Internal Rate Return (IRR) dan Payback Period. Teknologi yang dipilih berdasarkan hasil scoring adalah PEM Electroliser dengan nilai scoring 8,32. Analisa keekonomian pengembangan green hydrogen plant yang paling optimum adalah skema excess power 40% dengan nilai NPV sebesar USD 74.152.302, IRR 18,92% dan Payback Period selama 4,76 tahun (4 tahun 10 bulan). ......The development of hydrogen energy is growing rapidly in recent years as green energy sources have become much more important in various industries and can replace natural gas in the future. Countries in various parts of the world have started to develop hydrogen energy massively such as Japan, Korea, Italy, Spain, Saudi Arabia, China, Turkey and Morocco by using electrolysis method to produce hydrogen from renewable energy sources with competitive production costs. The cost of producing hydrogen which has been developed by the electrolysis method in Turkey USD 3.1 $/kgH2, South Korea USD 7.72 $/kgH2, Italy 6.9 €/kgH2, Saudi Arabia 43.1 $/kgH2 and Morocco 4.99 $/ kgH2. Therefore, it is necessary to research the development of green hydrogen production in Indonesia using the electrolysis method from floating solar photovoltaic in the Cirata Reservoir. The research method was carried out by selecting green hydrogen plant technology by comparing the specifications of the electrolyzer available in the market through a "scoring" scheme. Furthermore, an economic analysis is carried out through three excess power schemes, namely 20%, 30% and 40% of the electrical energy available in floating solar photovoltaic. Economic analysis is done by calculating the value of Net Present Value (NPV), Internal Rate Return (IRR) and Payback Period. The technology chosen based on the scoring results is PEM Electroliser with a scoring value of 8.32. The most optimum economic analysis of green hydrogen plant development is the 40% excess power scheme with an NPV value of USD 74,152,302, IRR 18.92% and a Payback Period of 4.76 years (4 years 10 months).
Depok: Fakultas Teknik Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Miko Satria
Abstrak :
Dibanding bahan bakar fosil, pemakaian hidrogen sebagai bahan bakar jauh lebih efektif dalam energy pembakaran hampir 3 kali lipat Keunggulan lain dari hidrogen adalah jumlahnya di alam ini sangat melimpah, 93 % dari seluruh atom yang ada di jagat raya ini adalah hidrogen. Tiga perempat dari massa jagat raya ini adalah hidrogen. Walaupun memiliki banyak keunggulan, penggunaan hidrogen sebagai bahan bakar juga memiliki kekurangan yaitu dalam hal penyimpanannya, hidrogen dalam suhu kamar dan tekanan atmosfir berbentuk fase gas sehingga memiliki rasio energi yang sangat rendah terhadap volumenya jika disimpan dalam bentuk gas. Penelitian berkaitan dengan metode dan material untuk menyimpan Hidrogen terus dilakukan, dengan hasil sejauh ini adalah kesimpulan bahwa penyimpanan hidrogen memakai prinsip adsorpsi dengan karbon aktif berbentuk granular sebagai adsorben sangat menjanjikan karena bisa menurunkan tekanan dalam tangki dengan kapasitas penyimpanan yang relatif sama. untuk meningkatkan daya adsorspsi dari karbon aktif dapat dilakukan dengan menjadikan partikelnya berukuran nano sehingga akan lebih banyak memiliki mikropori. Dari data hasil eksperimen diketahui kapasitas adsorpsi tempurung kelapa dalam bentuk granular pada suhu -5°C sebesar 0.004214 kg/kg adsorben, untuk suhu 25°C sebesar 0.003428 kg/kg adsorben. Untuk tempurung kelapa hasil mechanical ball miling diperoleh hasil yang tidak jauh berbeda dengan bentuk granular yaitu sebesar 0.004187 kg/kg adsorben pada suhu -5°C dan sebesar 0.003694 kg/kg adsorben pada suhu 25°C. hal ini dikarenakan jumlah total volume pori dari karbon aktif tempurung kelapa hasil mechanical ball miling relative sama dengan karbon aktif granular, walaupun dari segi luas permukaan terjadi penurunan yang cukup signifikan. Peningkatan kapasitas adsorpsi yang cukup siknifikan didapat pada karbon aktif tempurung kelapa yang telah dibentuk menjadi pellet dan mengalami reaktifasi secara kimia dengan menggunakan KOH pada suhu 700°C selama 1 jam yaitu sebesar 0.019434 kg/kg adsorben pada suhu -5°C dan sebesar 0.018756 kg/kg adsorben pada suhu 25°C. ......Compared to fossil fuels, use of hydrogen as a fuel is much more effective at burning energy is almost three times as Another advantage is the amount of hydrogen is very abundant in nature, 93% of all the atoms in the universe are hydrogen. Three quarters of the mass of the universe are hydrogen. Although it has many advantages, the use of hydrogen as a fuel also has the disadvantage that in terms of storage, hydrogen at room temperature and atmospheric pressure so that the shape of the gas phase has a very low energy ratio of the volume if stored in gaseous form. Research related to methods and materials for storing hydrogen is ongoing, with results so far is the conclusion that the principle of hydrogen storage by adsorption in the form of granular activated carbon as adsorbent is very promising because it can decrease the pressure in the tank with a storage capacity of the same relative. to enhance adsorspsi of activated carbon can be done by making nano-sized particles that would have more micropore. From the results of experimental data known to the adsorption capacity of coconut shell in granular form at a temperature of -5°C of 0.004214 kg / kg adsorbent, at temperature of 25°C at 0.003428 kg / kg adsorbent. For the coconut shell mechanical ball miling results obtained with the results are not much different from the granular form that is equal to 0.004187 kg / kg adsorbent at a temperature of -5°C and amounted to 0.003694 kg / kg adsorbent at 25°C. this is because the total pore volume of activated carbon coconut shell with the results of mechanical ball miling is relatively similar to granular activated carbon, although in terms of surface area decreased significantly. The increase is quite significant adsorption capacity obtained on activated carbon coconut shell which has been formed into pellets and had reactivation of chemically using KOH at a temperature of 700°C for 1 hour is equal to 0.019434 kg / kg adsorbent at a temperature of -5°C and amounted to 0.018756 kg / kg adsorbent at 25°C.
Depok: Fakultas Teknik Universitas Indonesia, 2011
T29921
UI - Tesis Open  Universitas Indonesia Library
cover
Nurafni Setiawati
Abstrak :
Bahan bakar fosil merupakan sumber energi yang sering digunakan hingga saat ini. Namun, penggunaan bahan bakar fosil secara terus menerus akan menyebabkan krisis energi dan kerusakan lingkungan akibat gas rumah kaca yang dihasilkan. Hal tersebut mendorong para peneliti untuk mengembangkan energi alternatif yang lebih ramah lingkungan. Hidrogen merupakan kandidat terkuat untuk dijadikan energi terbarukan karena memiliki densitas energi yang tinggi dan hasil pembakaran hidrogen hanya air, sehingga tidak menghasilkan gas polutan. Hidrogen dapat diproduksi dengan proses pemecahan air menggunakan air asin yang ketersediaannya berlimpah di alam. Teknologi pemecahan air banyak dikembangkan saat ini melalui fotokatalisis dengan memanfaatkan cahaya matahari menggunakan sel fotoelektrokimia dengan fotoelektroda berbasis bahan semikonduktor. Penelitian inimelakukan sintesis R-TiO2 nanotubes/BiVO4/Co-Pi sebagai fotoanoda pada sel fotoelektrokimia untuk produksi hidrogen (H2) dari air berkadar garam tinggi. Sintesis TiO2 nanotubes dilakukan dengan metode anodisasi, kemudian direduksi dengan reduksi elektrokimia untuk menghasilkan R-TiO2 nanotubes. Waktu reduksi divariasikan dengan 90, 180, dan 300 detik. Semakin lama waktu reduksi, energi celah pita semakin kecil dan densitas arus yang dihasilkan semakin besar. Sehingga, waktu reduksi optimum R-TNA berada pada 300 detik dengan energi celah pita sebesar 2,82 eV dan densitas arus sebesar 0,0017 mA/cm2 pada 1,23 V vs RHE. Modifikasi R-TNA dengan BiVO4 dilakukan dengan metode Successive Ionic Layer Adsorption and Reaction (SILAR) yang menghasilkan energi celah pita lebih kecil sebesar 2,53 eV dan densitas arus yang lebih besar sebesar 0,0035 mA/cm2 pada 1,23 V vs RHE. Modifikasi R-TNA/BiVO4 dengan Co-Pi dilakukan dengan metode elektrodeposisi yang menghasilkan densitas arus lebih besar sebesar 0,0071 mA/cm2 pada 1,23 V vs RHE. Rangkaian sel fotoelektrokimia menggunakan R-TNA/BiVO4/Co-Pi sebagai fotoanoda dan R-TNA/Pt sebagai katoda dengan waktu pengujian 3 jam menghasilkan hidrogen dengan konsentrasi sebesar 0,0826% dari air berkadar garam tinggi. ......Fossil fuel is an energy source that is often used today. However, the continuous use of fossil fuels will cause an energy crisis and environmental damage due to the greenhouse gases produced. This encourages researchers to develop alternative energy more eco-friendly. Hydrogen is the strongest candidate to use as renewable energy because it has high energy density and the product of hydrogen combustion is only water, so it doesn’t produce pollutants. Hydrogen can be produced by the process of water splitting from salty water, which is abundantly available in nature. Water splitting is currently being developed through photocatalysis by utilizing sunlight using photoelectrochemical cells with photoelectrodes based on semiconductor material. This study synthesized R-TiO2 nanotubes/BiVO4/Co-Pi as a photoanode in a photoelectrochemical cell for hydrogen production from salty water. TiO2 nanotubes were synthesized by anodizing method, then reduced by electrochemical reduction to produce R-TiO2 nanotubes. The reduction time was varied by 90, 180, and 300 seconds. The longer reduction time gives the smaller band gap energy and the larger photocurrent. Thus, the optimum reduction time of R-TNA is 300 seconds with a band gap energy of 2.82 eV and photocurrent of 0,0017 mA/cm2 at 1,23 V vs RHE. Modification of R-TNA with BiVO4 was carried out using the Successive Ionic Layer Adsorption and Reaction (SILAR) method has smaller band gap energy of 2.54 eV and larger photocurrent of 0,0035 mA/cm2 at 1,23 V vs RHE. Modification of R-TNA/BiVO4 with Co-Pi was carried out by electrodeposition method has the largest photocurrent of 0,0071 mA/cm2 at 1,23 V vs RHE. Photoelectrochemical cell using R-TNA/BiVO4/Co-Pi as photoanode and R-TNA/Pt as cathode for 3 hours produced hydrogen with a concentration of 0,0826% from salty water.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Abstrak :
Konsumsi minyal untuk pembangkit listrik berbahan bakar minyak diesel akan menjadi amat besar, bila tidak ditemukan alternatifnya. Dengan menyusutnya bahan bakar minyak maka akan terjadi kelangkaan minyak diesel di masa mendatang. Satu solusi pilihan adalah mencari alternatif untuk mengurangi kebutuhan minyak diesel yaitu dengan melakukan subtitusi hidrogen. Produksi hidrogen dari air melalui proses elektrolisa, yang membutuhkan panas dan bahan kimia, telah dikembangkan.Disain alat elektrolisa amat penting karena akan digabungkan langsung ke mesin diesel. Hidrogen diinjeksikan masuk ke ruang pembakaran untuk meningkatkan efisiensi pembakaran. Percobaan awal dari percampuran hidrogen dan minyak diesel dalam ruang bakar suatu mesin diesel diuraikan dalam makalah ini. Juga pengukuran gas buangnya seperti misalnya: carbon monoxide (CO), carbon dioxide (CO2), sulfur dioxide (SO2) dan nitrogen dioxide (NO2).
JITE 1:13 (2011)
Artikel Jurnal  Universitas Indonesia Library
cover
Ade Rafianto
Abstrak :
Penelitian ini dilakukan analisa geospasial, tekno ekonomi terhadap potensi pengembangan produksi hydrogen hijau di Indonesia. dengan bahan sumber daya energi terbarukan khususnya dari energi matahari dan energi angin. Melalui pemodelan geospasial dengan memanfaatkan teknologi geographic information system (GIS), potensi teknis dari sumber daya alam di suatu wilayah dapat diidentifikasi secara visual. Area yang memadai untuk dikembangkan sebagai lokasi pembangkit energi terbarukan yang akan diintegrasikan dengan fasilitas produksi hydrogen hijau dapat diestimasi dari sisi kuantitas, lebih lanjut identifikasi ini dapat membantu dalam menilai kelayakan ekonomis terhadap pengembangan jenis sumber energi. Analisa terkait aspek teknis dilakukan melalui perhitungan estimasi energi yang dapat dihasilkan dari tenaga surya dan tenaga angin. Sedangkan analisa ekonomi dilakukan melalui estimasi nilai Levelized Cost of Energy (LCOE) dan Levelized Cost of Hydrogen (LCOH) maupun perbandingan berdasarkan data penelitian yang telah ada. Penelitian berbasis pemodelan spasial dan tekno-ekonomis dinilai mampu memberi pandangan umum terkait potensi produksi hydrogen hijau dari energi terbarukan serta biaya produksinya dalam skala nasional, serta diharapkan dapat menjadi salah satu metodologi standar untuk diterapkan dalam memproyeksi pengembangan proyek produksi hydrogen hijau di masa mendatang. Hasil studi ini menunjukkan bahwa pembangkit energi terbarukan berbasiskan energi matahari dan energi angin cukup potensial untuk dikembangkan secara nasional, dengan catatan pemilihan lokasi dilakukan dengan seksama untuk menghindari konflik terkait tata guna lahan. Meskipun demikian secara umum biaya produksi hydrogen saat ini dinilai masih cukup tinggi dibandingkan komoditas energi lainnya akibat faktor biaya produksi energi terbarukan serta biaya teknologi electrolysis yang relatif cukup tinggi, dibandingkan energi fosil. Pada akhirnya pengembangan industry hydrogen hijau secara nasional patut didukung dengan mempersiapkan infrastruktur penunjang baik berupa infrastruktur fisik maupun kebijakan yang berpihak terhadap industry terkait di sektor hulu maupun hilir. ......This thesis presents a geospatial techno-economic analysis on the potential of low-cost and large-scale green hydrogen production in Indonesia. In this study, the potential of the hydrogen production using power feedstock sources from solar energy, wind power energy will be analysed. Utilizing geographic information system (GIS), a technical potential and economic assessment of hydrogen production can be visually depicted. The geospatial model visualizes the suitable areas potential for green hydrogen production sourcing from solar irradiation and wind energy system. The technical aspect of hydrogen potential is determined by the yield of the solar or wind system, based on currents knowledge of technologies. While the economic assessment is determined by the levelized cost of energy and hydrogen, LCOE and LCOH using cost input data. The research based on spatial modelling gives a general overview of the production price and potential-of green hydrogen generation from intermittent renewables sources on a national level. geospatial techno-economic analysis proves to be a suitable method to visualize the future hydrogen production development Our rough estimation shows that large-scale PV, wind farm integrated with hydrogen production potential could be potentially developed throughout the country. However, the economic scale may not be sufficient due to higher price of renewables electricity than current fossil fuel based of energy and high electrolyzer cost technology. Consequently, in order to support developing national green hydrogen strategies will require an integrated planning supported by dedicated infrastructure as well as right policy framework.
Jakarta: Fakultas Teknik Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Elizabeth Verdiana Listiono
Abstrak :
ABSTRAK
Hidrogenasi dilakukan terhadap fraksi non-oksigenat bio-oil hasil slow co-pyrolysis bonggol jagung dan plastik polipropilena. Dalam reaksi hidrogenasi, terjadi proses adisi gas hidrogen pada ikatan rangkap bio-oil sehingga diperoleh biofuel dengan karakteristik berupa viskositas, disstribusi berat molekul, dan branching index yang kemudian dibandingkan dengan diesel komersial. Penjenuhan dengan hidrogenasi dilakukan dalam suatu tangki berpengaduk 300mL dengan jenis down-flow 45o pitched blade turbine pada tekanan rendah akibat dominasi bio-oil fasa cair Konfigurasi tersebut mampu menarik dan mempertemukan gas hidrogen dengan bio-oil dan katalis berupa Ni/Al2O3 yang memiliki selektivitas yang baik serta mampu memberikan yield yang tinggi. Percobaan dilakukan pada berbagai variasi tekanan gas hidrogen untuk menganalisis hubungan kedua variabel tersebut terhadap karakteristik biofuel yang dihasilkan. Variabel lain berupa durasi reaksi dikontrol selama 2 jam, sedangkan laju alir gas hidrogen dan temperatur hidrogenasi disesuaikan dengan nilai tekanan gas hidrogen. Pada variasi tekanan gas hidrogen bernilai antara 4 hingga 10 bar, peningkatan tekanan gas hidrogen menghasilkan biofuel dengan penurunan persentase senyawa alkena dari 4,14% hingga 0,00%, namun terjadi peningkatan nilai branching index dari 1,29 hingga 1,56, distribusi berat molekul, dan viskositas dari 9,06 hingga 10,86 cSt yang semakin menjauhi bahan bakar komersial.
ABSTRACT
Hydrogenation is implemented on non-oxygenated fraction of bio-oil produced from slow co-pyrolysis of corncob and popypropylene plastic. The process is conducted by addition of hydrogen gas on bio-oil double bonds occured to produce biofuel whose quality is compared to those of commercial diesel fuel which is characterized by its viscosity, molecular weight distribution and branching number. The saturation process is conducted in 300 mL stirred tank reactor with down-flow 45o pitched blade turbine impeller operated in low pressure due to the domination of liquid phase of bio-oil. This configuration enables pullout and mixing of hydrogen gas with bio-oil and catalyst. Ni/Al2O3 catalyst is used to obtain high selectivity and yield of hydrogenation reaction. The experiment is performed on several variation of hydrogen gas pressure to analyze their effects on characteristics of produced biofuel. The hydrogenation duration is controlled in 2 hours, while the hidrogen gas flow and hydrogenation temperatur are adjusted by the hydrogenation gas pressure. At the low pressure of hydrogen gas range from 4 to 10 bar, the increasing of hydrogen gas pressure produces biofuel with decreasing alkene compound from 4.14% to 0.00%, yet has increasing branching index from 1.29 to 1.56, low molecular weight distribution, and viscosity from 9.06 to 10.86 cSt which move further from commercial fuel characteristics.
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Bryan Afandy
Abstrak :
Kemajuan energi terbarukan akan mempengaruhi keseimbangan persediaan dan kebutuhan teknologi. Oleh karena itu, teknologi pendukung untuk infrastruktur energi sangat krusial untuk menjaga keseimbangan persediaan dan kebutuhan energi. Penyimpanan hidrogen bawah tanah pada ‘Lined Rock Cavern’ dapat menjadi solusinya dalam industry energi. Tesis ini meninjau teknologi yang telah diimplementasikan diluar negeri dan mengusulkan bagaimana teknologi tersebut dapat dibangun di Australia. Tesis ini membahas mengenai kematangan penyimpanan hidrogen bawah tanah yang telah dibangun di Swedia menunjukan adanya potensi untuk membangun fasilitas yang sama di Australia. Untuk lebih memahami mekanika bebatuan pada lokasi yang berpotensi di Australia, diperlukan proyek uji coba serupa degan ‘Grängesberg Pilot Plant’. Namun dengan adanya keterbatasan informasi, studi lebih lanjut mengenai analisa keuangan, dampak lingkungan, dan kondisi geologi diperlukan untuk kesuksesan proyek tersebut. ......The current rise of renewable energy will influence the energy balance between supply and demand. Therefore, supporting technology in energy infrastructure is crucial to maintain the supply and demand balance. Underground hydrogen storage using lined rock cavern might be game changing in the energy industry. This paper reviews technologies that have been done overseas and proposes what can be done to construct an underground hydrogen storage using purpose-build lined rock cavern in Australia. This paper shows the maturity of an underground hydrogen storage built in Sweden and indicates the viability of potential of similar facility built in Australia. It is proposed that a pilot project similar with Grängesberg Pilot Plant is built and simulated to better understand the rock mechanics for potential sites located in Australia determined the viability of the project. However due to lack of information, further research including cost benefit, environmental impact and geological assessment is needed to run the facility successfully.
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Shafira Hakim Yanewati
Abstrak :
Crude Palm Oil (CPO) dapat diproses melalui pirolisis menghasilkan bio-oil yang membutuhkan upgrading untuk mengubah bio-oil menjadi biofuel salah satunya melalui hidrodeoksigenasi (HDO). Penelitian lanjut mengenai pengaruh tekanan gas hidrogen (H2) terhadap reaksi HDO dengan komponen umpan olahan CPO serta pirolisat Polypropylene (PP) termal dilakukan untuk meningkatkan pemahaman komprehensif terhadap variabel reaksi HDO pada produksi biofuel dengan metode umpan gas H2 dan pelarut yang berbeda. HDO katalitik campuran 50% Refined Bleached Deodorized Palm Oil (RBDPO) dan 50% pirolisat PP termal- juga berperan sebagai pelarut- dengan katalis Ni-Cu/ZrO2 dilakukan pada variasi tekanan 8-14 bar gas H2 menggunakan reaktor hidrogenasi self-induced impeller. Katalis Ni-Cu/ZrO2 hasil preparasi penelitian berukuran mesopori dengan ukuran kristal 33,95 nm, luas permukaan spesifik 8,04 m2/g, dan konsentrasi situs basa sebesar 0,38 mmol/g memiliki stabilitas termal yang rendah serta interaksi Ni dengan metal-oxide lemah karena keberadaan pengotor dan Ni-Cu yang kurang terimpregnasi pada pengemban ZrO2. Tekanan gas H2 memengaruhi perubahan komposisi ke arah biodiesel dengan peningkatan komposisi alkana dan olefin serta penurunan komposisi sikloalkana, alkohol, asam karboksilat, dan keton sepanjang 10 - 14 bar gas H2 di samping keberadaan data outlier pada 8 bar gas H2. Yield fraksi cair maksimal 55-65% dengan peningkatan yield solid campuran wax dan sludge dari komponen umpan serta penurunan yield NCG seiring peningkatan tekanan gas H2 didapatkan. Rasio komponen PP dan RBDPO sebagai umpan pada reaksi HDO menghasilkan yield biofuel tertinggi pada 50% PP dan 50% RBDPO. Keuntungan kemampuan dispersi partikel gas H2 pada self-inducing impeller reaktor HDO tidak dapat menanggulangi rendahnya solubilitas gas H2 pada pelarut pirolisat PP termal. ......Crude Palm Oil (CPO) can be processed through pyrolysis to produce bio-oil which requires upgrading to convert bio-oil into biofuel, one of which is through hydrodeoxygenation (HDO). Further research on the effect of hydrogen gas pressure (H2) on HDO reactions with processed CPO feed components and thermal Polypropylene (PP) pyrolyzate was carried out to improve a comprehensive understanding of HDO reaction variables in biofuel production with H2 gas feed methods and different solvents. The catalytic HDO mixture of 50% Refined Bleached Deodorized Palm Oil (RBDPO) and 50% thermal PP pyrolyzate- also acts as a solvent- with a Ni-Cu/ZrO2 catalyst carried out at a pressure variation of 8-14 bar H2 gas using a self-induced impeller hydrogenation reactor. The Ni-Cu/ZrO2 catalyst as a result of the research preparation is mesoporous with a crystal size of 33.95 nm, a specific surface area of ​​8.04 m<2/g, and a base site concentration of 0.38 mmol/g. It has low thermal stability and the interaction of Ni with metal. -oxide is weak due to the presence of impurities and poorly impregnated Ni-Cu on the support. The pressure of H2 gas affects the composition change towards biodiesel by increasing the composition of alkanes and olefins and decreasing the composition of cycloalkanes, alcohols, carboxylic acids, and ketones along 10 - 14 bar of H2 gas in addition to the presence of outlier data at 8 bar of H2 gas. Maximum liquid fraction yield is 55-65% with an increase in yield of solid mixture of wax and sludge from the feed component and a decrease in NCG yield as H2 gas pressure increases. The ratio of PP and RBDPO components as feed in the HDO reaction resulted in the highest biofuel yields at 50% PP and 50% RBDPO. The advantage of H2 gas particle dispersion ability in the self-inducing impeller of the HDO reactor cannot overcome the low solubility of H2 gas in the thermal PP pyrolyzate solvent.
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Boca Raton: CRC Press, Taylor & Francis Group, 2009
665.81 HYD
Buku Teks  Universitas Indonesia Library
cover
Rand, D.A.J.
Cambridge, UK: The Royal Society of Chemistry , 2008
333.794 RAN h
Buku Teks  Universitas Indonesia Library
<<   1 2   >>