Ditemukan 2 dokumen yang sesuai dengan query
Eryawan Deise Ulul
Abstrak :
[ABSTRAK
Hierarchical clustering merupakan metode yang efektif dalam membentuk pohon
filogenetik dengan mengetahui matriks jarak antar barisan DNA. Salah satu cara
untuk membuat matriks jarak yaitu dengan cara menggunakan metode -mer.
Kelebihan dari metode -mer yaitu lebih efisien dalam segi waktu. Langkahlangkah
dalam membuat matriks jarak dengan metode -mer dimulai dengan
membentuk -mer sparse matrix dari masing barisan DNA. Selanjutnya,
membentuk -mer singular value vector. Pada tahap akhir yaitu menghitung jarak
antar vektor. Pada tesis ini akan dilakukan analisis terhadap barisan DNA MERSCoV
dengan mengimplementasi Hierarchical clustering menggunakan -mers
sparse matrix sehingga dapat diketahui leluhur dari masing-masing barisan DNA
MERS-CoV.
ABSTRACT
Hierarchical clustering is an effective method in creating phylogenetic by
knowing the distance matrix between DNA sequence. One of methods to make the
distance matrix use -mer method. -mer is more efficient than others. The steps
to make distance matrix using -mer method starts from creating -mer sparse
matrix. Then, creating -mer singular value vector. The last steps is counting
distance each vectors. This thesis will analyze the sequence of DNA MERS-CoV
by implementing Hierarchical clustering using k-mers sparse matrix so that will
be known the ancestor of each sequence of DNA MERS-CoV., Hierarchical clustering is an effective method in creating phylogenetic by
knowing the distance matrix between DNA sequence. One of methods to make the
distance matrix use -mer method. -mer is more efficient than others. The steps
to make distance matrix using -mer method starts from creating -mer sparse
matrix. Then, creating -mer singular value vector. The last steps is counting
distance each vectors. This thesis will analyze the sequence of DNA MERS-CoV
by implementing Hierarchical clustering using k-mers sparse matrix so that will
be known the ancestor of each sequence of DNA MERS-CoV.]
2015
T44260
UI - Tesis Membership Universitas Indonesia Library
Bayu Permata Negara
Abstrak :
Analisis kelompok adalah metode multivariat yang bertujuan mengelompokkan pengamatan berdasarkan karakteristiknya. Salah satu metode analisis pengelompokan adalah metode cluster ensembel dengan pengelompokan dilakukan dengan satu metode berulang kali hingga diperoleh hasil yang lebih baik dibandingkan jika dilakukan satu kali. Penelitian ini mencoba menggunakan Cluster Ensemble Based Mixed Data Clustering (CEBMDC), yaitu metode pengelompokan yang biasa dilakukan untuk data dengan variabel campuran yaitu numerik dan kategorik. Tahap awal dalam metode ini yaitu membagi data awal menjadi data dengan hanya variabel-variabel numerik dan data dengan hanya variabel-variabel kategorik. Data yang telah dipisahkan berdasarkan jenis variabelnya kemudian dikelompokan menggunakan metode yang sesuai secara simultan. Hasil pengelompokan ini menjadi data baru dengan dua variabel kategorik yaitu hasil pengelompokan dengan variabel numerik dan hasil pengelompokan dengan variabel kategorik. Data baru dengan dua variabel kategorik ini kemudian dilakukan proses pengelompokan. Metode pengelompokan untuk data dengan variabel numerik adalah metode Hierarchical Agglomerative Clustering. Metode clustering untuk data kategorik adalah ROCK (RObust Clustering using linKs) dan K-medoids/PAM (Partition Around Medoids). Penelitian ini membandingkan hasil pengelompokan ROCK dan K-medoids. Pengelompokan dilakukan pada data mengenai sarana dan prasarana sekolah yang diambil dari 5.094 SMP yang ada di Jawa barat. Metode pengelompokan dengan kinerja terbaik pada penelitian ini adalah Ensemble K-medoids berdasarkan rasio antara simpangan baku di dalam kelompok (¬SW) dan simpangan baku antar kelompok (SB) terkecil. Penelitian ini menghasilkan 3 kelompok yang mencerminkan kondisi sekolah-sekolah pada jenjang SMP di Jawa Barat.
Clustering analysis is a multivariate method that aims to classify observations based on their characteristics. One method of clustering analysis is the ensemble clustering method in which the grouping is done using a method repeatedly until better results are obtained than if it is done once. This study uses the Cluster Ensemble Based Mixed Data Clustering (CEBMDC), which is a grouping method that commonly used for data with numerical and categorical variables. The first step in this method is to divide the initial data into two parts, that is data with only numerical variables and data with categorical variables. After data has been separated based on the types of variables, and then clustering using the appropriate method is conducted simultaneously. The results of these two clustering method become a new data with two categorical variables, namely the results of clustering with numeric variables and the results of clustering with categorical variables. The new data with two categorical variables are then carried out the clustering process. The clustering method for data with numerical variables is the Hierarchical Agglomerative Clustering method. Clustering methods for categorical data are ROCK (RObust Clustering using linKs) and K-medoids / PAM (Partition Around Medoids). This study compares the results of ROCK and K-medoids clustering. The study was conducted on data of school facilities and infrastructure taken from 5094 junior high schools in West Java. The best performance grouping method in this study is the Ensemble K-medoids based on the ratio between the standard deviation in the group (SW) and the smallest standard inter-group (SB) deviation. This study produced 3 groups that reflect the condition junior high schools in West Java.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership Universitas Indonesia Library