Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 3 dokumen yang sesuai dengan query
cover
Leni Nur Hidayati
Abstrak :
Kebutuhan layanan multimedia berkembang dengan pesat melalui kanal radio (wireless channels) mendorong terbentuknya sistem transmisi citra nirkabel (wireless image transmission systems) baik pada kanal AWGN maupun kanal fading. Aplikasi dari transmisi citra melalui kanal nirkabel sangat menarik untuk diamati karena hal ini memerlukan desain yang seperti dari penggunaan pengkodean (coding) untuk kompresi dari citra dikarenakan keterbatasan sumber daya seperti bandwidth dan daya energi untuk transmisi. Untuk mengurangi ukuran data yang ditransmisikan digunakan teknik kompresi citra, salah satunya yaitu Run Length Encoding (RLE). Saat ini, pentingnya identifikasi biometric mengalami peningkatan seiring dengan adanya perdagangan elektronik (electronic commerce). Identifikasi tanda tangan dikembangkan secara luas sebagai salah satu metoda identifikasi biometric. Salah satu metoda identifikasi untuk tanda tangan digunakan Hidden Markov Model (HMM). Dalam tesis ini dilakukan pengenalan citra tanda tangan yang telah ditransmisikan pada kanal fading Rayleigh dengan menggunakan metode Hidden Markov Model (HMM). Sebelum ditransmisikan, citra tanda tangan dikompresi terlebih dahulu dengan menggunakan RLE. Citra tanda tangan ditransmisikan beberapa kali untuk disimpan pada basis data sedangkan pada proses pengenalan citra tanda tangan hanya ditransmisikan sekali saja untuk dijadikan sebagai citra uji. Pada tahap pembentukkan basis data, citra tanda tangan diubah menjadi vektor sebagai titik sample dan titik-titik yang terdekat akan dikuantisasi menjadi centroid atau codeword. Kumpulan codeword akan disimpan sebagai codebook di dalam basis data. Pengenalan dilakukan dengan membandingkan besaran log of probability HMM yang dihitung berdasarkan urutan observasi atau codeword dari setiap sample citra tanda tangan. Dengan menggunakan codebook berukuran 32, 64 dan 128 bit dengan jumlah training 10 dan 20 kali, diperoleh tingkat akurasi pengenalan citra tanda tangan pada kanal fading Rayleigh dengan tidak menggunakan kompresi RLE yaitu antara 0 sampai 36 % sedangkan yang menggunakan kompresi RLE akurasinya sebesar 60 % sampai 76 %. Rasio kompresi citra tanda tangan didapatkan antara 97,78% sampai 98,42 %. Probabilitas kesalahan simbol citra tanda tangan yang tidak menggunakan RLE yaitu 0,9749 sampai dengan 0,9762 sedangkan yang menggunakan kompresi RLE sebesar 0,6785 sampai 0,9691.
The need of multimedia services growth increasingly over wireless channels that encourage wireless image transmission systems both through AWGN or fading channel. Application from image transmission over wireless channels are very interesting to be observation because its need the good design from compression coding because the limited resource such as bandwidth and energy resource for transmission. To reduce transmission data size, image compression technique is used, such as Run Length Encoding (RLE). Recently application of biometric identification increases because of electronic commerce. Signature identification was extended as once method of biometric identification. Once of signature identification method is Hidden Markov Model (HMM). In this research recognition of transmitted signature on Rayleigh fading channels used HMM. Before transmission, signature image compressed with RLE. Signature image transmitted more once times then it?s saved at data base but at the recognition process signature image only transmitted once time as tested image. In the process of making data base, signature image changed to be vector as sample point and the nearest points will be quantized as centroid or codeword. The collection of codeword will be stored as codebook in data base. Recognition is performed by comparing the value log of probability HMM which computed base on sequences of observation or codeword each sample from signature image. Base on using codebook 32, 64 and 128 bit with 10 and 20 training, can reach performance of signature image recognition at Rayleigh fading channel if not using RLE compression is 0 % ? 36 % and if using RLE compression is 60 % - 76 % . Compression rate of signature image is 97,78% - 98,42%. Probability of symbol error of signature image which not using RLE compression is 0,9749 ? 0,9762 but if using compression RLE is 0,6785 ? 0,9691.
Depok: Fakultas Teknik Universitas Indonesia, 2010
T27559
UI - Tesis Open  Universitas Indonesia Library
cover
Chandra Sasmita
Abstrak :
Skripsi ini dibuat untuk merancang perangkat lunak yang dapat mengidentifikasi golongan darah melalui proses 'image processing' dengan menggunakan 'Hidden Markov Model'. Darah manusia terbagi menjadi 4 golongan menurut sistem penggolongan darah ABO. Pengolongan ini dapat dikenali dengan berbagai metode. Skripsi ini bertujuan sebagai penelitian untuk menganalisa pengenalan golongan darah manusia dalam bentuk 'Image' dengan metode 'Hidden Markov Model' (HMM) yang selanjutnya akan dihasilkan keluaran dalam bentuk probabilitas. Proses pengenalan darah dikhususkan dengan memasukkan 'image' ke dalam pemrogaman perhitungan matematis. Selanjutnya penelitian dilakukan 2 tahapan, yaitu: pembentukan 'database' dan proses pengenalan. Pada proses pembuatan 'database', gambar akan dibagi-bagi menjadi beberapa 'frame' agar lebih memudahkan proses. Setiap 'frame' diubah ke dalam domain frekuensi menjadi bilangan vektor yang disebut 'sample point'. Kumpulan beberapa 'sample point' terdekat dikuantisasi menjadi sebuah nilai yang disebut 'centroid' dan kumpulan 'centroid' ini menghasilkan sebuah 'codeword', untuk kemudian disimpan dalam sebuah 'database codebook'. Semua data dalam 'database codebook' diolah sehingga menghasilkan parameter-parameter HMM yang kemudian disimpan dalam sebuah 'database' HMM yang akan menghasilkan nilai-nilai 'log of probability' untuk setiap perbandingan target gambar dengan data pada database HMM. Data dengan nilai 'log of probability' yang paling tinggi disimpulkan sebagai keluaran dari keseluruhan proses. This final project of undergraduate program was created to design the software that could identify ABO blood type with applying Hidden Markov Model.
Human blood consist of 4 categories based on ABO blood type. This categorization can be recognized with some method, such as: Fuzzy Logic, Neural Network, Hidden Markov model. The purpose of this project was identify the human blood using special software with applying Hidden Markov Model with minimal error, so the results still can show what the reality are. We got the results from the highest probability that comes from the output of Hidden Markov Model. For better and easiest programming, we used special mathematical software. Later on, the examination was conducted in 2 steps. The 1st was to make a database and 2nd to do the identification. In the 1st step, the picture was cropped and standardized to the exact same file extension and same matrix form. We call the results as frames in which we change it over to frequency domain that hence numerical vector in which we call it as sample point. Some collection of sample point were calculated as a value that we call as centered point and the collection of these centered points was called codeword that was stored as a database codebook. All the codeword was calculated to get HMM parameter that was stored in a HMM database as log of probability value for every comparison with the target picture. Log of probability value would show the conclusion of the target picture which also means what type the blood belongs.
Depok: Fakultas Teknik Universitas Indonesia, 2008
S40577
UI - Skripsi Open  Universitas Indonesia Library
cover
Henry Pribadi
Abstrak :
ABSTRACT
Skripsi ini menganalisa metode machine learning menggunakan Hidden Markov Model (HMM), yang merupakan alat prediksi stochastic dan probabiliti digunakan untuk mengevaluasi gerakan di dalam pasar valuta asing. Skripsi ini membahas khususnya penerapan metode HMM di pasar valuta asing sebagai alat untuk memprediksi pergerakan dan hasil dari nilai tukar di dalam pasar, kemudian menganalisis data yang tersedia, dan akhirnya membuat keputusan berdasarkan hasil yang diperoleh. Data yang digunakan adalah data harga penutupan pada pasar valuta asing AUD/USD dalam dua jangka waktu yang berbeda, harga penutupan per 1 jam dan per 15 menit, dan data yang digunakan diperoleh dari beberapa sumber online. Analisis awal menunjukkan beberapa faktor eksternal dapat mempengaruhi keakuratan hasil. Hasilnya mengindikasi, dengan tidak memperhitungkan factor-faktor luar lainnya, akurasi yang lebih baik didapat sewaktu menggunakan haraga penutupan jangka waktu yang lebih pendek.
ABSTRACT
This bachelor thesis analyses the method of machine learning using Hidden Markov Model, which is a predictive stochastic and probability tool in order to evaluate the movement inside the foreign exchange market. This paper discusses particularly the application of HMM method in the forex (foreign exchange) market, as the tool for forecasting the movement and the outcome of the exchange rate inside the market, analyses them, and finally making a decision basing on the obtained outcomes. The data used are the closing price of the AUD/USD forex market in two different timeframes, per hour closing price and per 15 minutes closing price, and was obtained from several online foreign exchange sources. Initial analysis suggests several external factors may affect the accuracy of the results. The results indicate, excluding any external factors, better accuracy was obtained when shorter closing price timeframe was used.
2016
S64506
UI - Skripsi Membership  Universitas Indonesia Library