Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2 dokumen yang sesuai dengan query
cover
Ayik Abdillah
Abstrak :
Sektor pelayaran merupakan salah satu aktivitas yang paling banyak menyumbang emisi gas rumah kaca, yaitu sulfur oksida, nitrogen oksida, dan partikulat. Oleh karena itu, Organisasi Maritim Internasional merilis peraturan untuk mengurangi emisi gas rumah kaca melalui penggunaan energi ramah lingkungan yang memiliki kadar sulfur maksimal 0.5%. Pyrolysis merupakan salah satu metode yang dapat digunakan untuk produksi energi rendah sulfur dengan menghasilkan bio-oil (PBO). Namun, PBO memiliki tingkat keasaman rendah, bersifat korosif, memiliki volatilitas yang buruk, viskositas yang tinggi, dan kadar oksigen yang tinggi sehingga densitas energi cukup rendah. Penelitian ini bertujuan untuk meningkatkan kualitas PBO berasal dari sampah organik insulasi bangunan gedung. Metode yang digunakan adalah supercritical fluid menggunakan pelarut etanol dengan variabel rasio etanol terhadap PBO sebesar 1:1, 5:1, dan 7:1, waktu tinggal sebesar 10, 30, dan 60 menit, dan penambahan katalis HZSM-5 dan CoMo/Al2O3. Parameter penelitian dilakukan melalui pemeriksaan viskositas, densitas upgraded bio-oil (UBO), densitas energi (HHV), elemental composition, dan senyawa produk melalui GCMS. Hasil penelitian menunjukkan bahwa rasio 7:1 dengan waktu tinggal 30 menit dengan menggunakan katalis HZSM-5 merupakan kondisi operasi yang optimal untuk menghasilkan kualitas bio-oil yang maksimal. Nilai viskositas pada kondisi operasi ini mencapai 8 mPa.s dari 741 mPa.s, peningkatan HHV dari 20.94 MJ/Kg menjadi 26.90 MJ/Kg. Namun, densitas UBO sebesar 1.054 masih perlu dioptimalkan agar sesuai dengan standar internsional. ......The shipping sector is one of the activities that contribute the most to greenhouse gas emissions, namely sulfur oxides, nitrogen oxides, and particulate matter. Therefore, the International Maritime Organization has released regulations to reduce greenhouse gas emissions through the use of environmentally friendly energy that has a maximum sulfur content of 0.5 wt.%. Pyrolysis is one method that can be used for the production of low-sulfur energy by producing bio-oil (PBO). However, PBO has low acidity, high corrosivity, poor volatility, high viscosity, and high oxygen content so the energy density is quite low. This study aims to improve the quality of PBO derived from bio-based building insulation materials. The method used is supercritical fluid using ethanol as a solvent with a variable ratio of ethanol to PBO was 1:1, 5:1, and 7:1, residence times were 10, 30, and 60 minutes, and the addition was HZSM-5 and CoMo/Al2O3 catalysts. The parameters of the research were carried out by checking the viscosity, density of upgraded bio-oil (UBO), higher heating value (HHV), elemental composition, and product compounds through GCMS. The results showed that the ratio of 7:1 with a residence time of 30 minutes using the HZSM-5 catalyst was the optimal operating condition to produce maximum bio-oil quality. The viscosity value at this operating condition reached 8 mPa.s from 741 mPa.s , increasing HHV from 20.94 MJ/Kg to 26.90 MJ/Kg. However, the UBO density of 1.054 still needs to be optimized to meet international standards.
Depok: Fakultas Teknik Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Danisha
Abstrak :
Pada tahun 2023, sektor limbah menyumbang 12% emisi GRK di Indonesia, dimana perhitungannya masih menggunakan pendekatan pemodelan. Dimana, sekitar 80% masyarakat di Indonesia menggunakan teknologi air limbah setempat. Hal ini merupakan tantangan besar dalam perhitungan GRK dari sektor air limbah yang berkorelasi dengan rencana mitigasi pengurangannya. Penelitian ini berfokus dalam mengukur laju emisi GRK secara langsung (direct measurement) dari sistem pengolahan air limbah setempat. Hingga saat ini, belum terdapat standar pengukuran emisi GRK dari sistem pengolahan air limbah setempat. Oleh karena itu, penelitian ini bertujuan untuk mendesain dan mengembangkan perangkat penangkap GRK berupa flux chamber (FC), mengestimasi laju emisi GRK berdasarkan sampel GRK yang diambil secara langsung, dan menganalisis dampaknya pada skala nasional dengan menggunakan studi kasus di Asrama Universitas Indonesia. Tangki septik objek studi dipilih karena memiliki ukuran manhole yang cukup untuk perangkat FC dan pengurasan rutin yang dilakukan oleh pihak Asrama UI. Dari segi infrastruktur, tangki septik Asrama UI memiliki kekurangan berupa lubang manhole tidak tertutup sempurna, tidak ada pipa ventilasi, dan terdapat genangan air pada outlet. Perangkat FC yang dirakit dalam penelitian ini dibuat menggunakan pipa PVC yang bersifat non-reaktif dan mudah ditemukan sehingga cocok untuk digunakan di negara berkembang. Pengambilan data penelitian dilakukan pada tangki septik yang terletak di Gedung F Asrama UI dan data diambil sebanyak dua kali dalam bulan yang berbeda. Tangki septik Gedung F Asrama UI melakukan pengurasan rutin setiap 6 bulan sekali. Hasil analisis gas diuji secara ex situ menggunakan uji gas chromatography (GC). GRK yang diukur dalam penelitian ini adalah gas metana (CH4) dan karbon dioksida (CO2). Konsentrasi gas yang didapatkan selama 60 menit pengambilan data berkisar di angka 276,886—1.931.765 mg/m3 untuk gas CH4 dan 1.150,553—7.381,237 mg/m3 untuk gas CO2. Konsentrasi kedua gas cenderung mengalami peningkatan sepanjang waktu pengambilan sampel. Hasil penelitian menunjukkan laju emisi GRK yang dihasilkan dari penampungan lumpur tinja dalam tangki septik berada 20 kali lipat lebih rendah dibandingkan dengan estimasi laju IPCC. Jika dibandingkan dengan penelitian serupa, laju emisi GRK yang dihasilkan dari penelitian ini tergolong kecil. Hal ini mungkin terjadi karena beberapa kemungkinan, seperti periode pengurasan tangki septik, waktu tinggal air limbah dalam tangki septik, dan infrastruktur tangki septik yang memengaruhi laju emisi GRK. Meskipun data yang digunakan hanya berasal dari 1 tangki septik yang diukur sebanyak dua kali, penelitian ini tetap melakukan perhitungan awal untuk emisi GRK di skala nasional. Hasil penelitian kemudian diekstrakpolasi ke skala nasional dengan mengalikan laju emisi per kapita dengan persentase penduduk yang menggunakan tangki septik. Laju emisi GRK dari sektor pengolahan air limbah setempat berdasarkan penelitian ini diperkirakan berkontribusi hingga 2% dari emisi GRK sektor limbah di Indonesia. ......In 2023, the waste sector will contribute 12% of GHG emissions in Indonesia, where the calculations still use a modeling approach. Around 80% of people in Indonesia use local wastewater technology. This is a big challenge in calculating GHG from the wastewater sector, which is correlated with the reduction mitigation plan. This research focuses on measuring the rate of GHG emissions directly (direct measurement) from local wastewater treatment systems. Until now, there is no standard for measuring GHG emissions from local wastewater treatment systems. Therefore, this research aims to design and develop a GHG capture device in the form of a flux chamber (FC), estimate the GHG emission rate based on GHG samples taken directly, and analyze the impact on a national scale using a case study at the University of Indonesia Dormitory. The study object's septic tank was chosen because it has a sufficient maintenance hole size for the FC device, and the UI Dormitory carries out routine draining. Regarding infrastructure, the UI Dormitory septic tank has shortcomings in the form of maintenance holes that are partially closed, no ventilation pipes, and standing water at the outlet. The FC device assembled in this research was made using PVC pipe, which is non-reactive and easy to find, making it suitable for use in developing countries. Research data was collected in a septic tank in Building F of the UI Dormitory, and data was collected twice in different months. The septic tank in Building F, UI Dormitory, is drained routinely every 6 months. The gas analysis results were tested ex-situ using the gas chromatography (GC) test. The GHGs measured in this study are methane gas (CH4) and carbon dioxide (CO2). The gas concentration obtained during 60 minutes of data collection ranged from 276,886—1.931,765 mg/m3 for CH4 gas and 1.150,553— 7.381,237 mg/m3 for CO2 gas. The concentration of both gases tends to increase throughout the sampling time. The research results show that the GHG emission rate from storing fecal sludge in septic tanks is 20 times lower than the IPCC estimated rate. Compared with similar studies, the rate of GHG emissions resulting from this research is relatively small. This may occur due to several possibilities, such as the draining period of the septic tank, the residence time of wastewater in the septic tank, and the septic tank infrastructure, which influences the rate of GHG emissions. Even though the data used only comes from 1 septic tank, which was measured twice, this research still performs initial calculations for GHG emissions nationally. The research results were then extracted to a national scale by multiplying the per capita emission rate by the population percentage using septic tanks. Based on this research, the rate of GHG emissions from the local wastewater processing sector is estimated to contribute up to 2% of the GHG emissions from the waste sector in Indonesia.
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library