Graf ðº terdiri dari sepasang himpunan simpul dan himpunan busur. Graf yang tersusun dari sebanyak ð graf bintang yang terhubung oleh satu simpul tambahan disebut sebagai graf pohon pisang. Orde ganjil pada graf pohon pisang dapat dicapai dengan ukuran dan banyaknya graf bintang yang membentuk dirinya. Pelabelan super busur graceful merupakan pemetaan bijektif himpunan busur ke himpunan {0, ±1, ±2, … , ± |ð¸(ðº)|−1 2 } apabila jumlah busur ganjil dan ke himpunan { ±1, ±2, … , ± |ð¸(ðº)|−1 2 } apabila jumlah busur genap, sedemikian sehingga tidak terdapat label busur yang sama dan tiap simpul ð¥ dari busur ð¥ð¦ memiliki bobot ∑ð¥∈ð(ðº) ð(ð¥ð¦), tidak memiliki bobot simpul yang sama. Lee membuat sebuah konjektur bahwa semua graf pohon berorde ganjil berlabel super busur graceful. Sesuai dengan konjektur tersebut, penelitian ini akan membahas pelabelan super busur graceful untuk graf pohon pisang dengan orde ganjil.
Graph ðº consisted of a pair of a set of vertices and a set of edges. A graph made out of as many as ð star graph, connected by an additional vertex, is called a banana tree graph. A banana tree graph with an odd order can be achieved by a certain size of star graph it is made of. Super edge graceful labeling is a bijective mapping of a set of edges a set of {0, ±1, ±2, … , ± |ð¸(ðº)|−1 2 } if there are odd amount of edges and to a set of { ±1, ±2, … , ± |ð¸(ðº)|−1 2 } if there are even amount of edges thus that there are no edges sharing the same label and for each ð¥ vertex from an ð¥ð¦ edge labeled ∑ð¥∈ð(ðº) ð(ð¥ð¦), there is no vertex sharing the same label. Lee created a conjecture stating that all odd ordered tree graphs are super edge graceful. Based on that conjecture, this research will discuss super edge graceful labeling on odd ordered banana tree graph.
"Misalkan $G$ adalah graf sederhana. Jarak antara dua simpul $u$ dan $v$ di $G$ adalah panjang lintasan terpendek yang menghubungkan kedua simpul tersebut. Himpunan simpul pada graf $G$ yang berjarak kurang dari atau sama dengan $d$ dari simpul $v$ dinotasikan dengan $N_d(v)$. Pelabelan simpul tak teratur jarak-$d$ inklusif pada graf $G$ merupakan pelabelan simpul dengan bobot-bobot simpul yang berbeda. Bobot suatu simpul $v$ pada pelabelan tersebut diperoleh dari jumlah semua label simpul pada $N_d(v)$ dan label simpul $v$ itu sendiri. Nilai terkecil dari label terbesar yang digunakan pada semua pelabelan yang mungkin untuk graf $G$ disebut bilangan ketakteraturan simpul jarak-$d$ inklusif dari $G$ dan dinotasikan dengan $\dis_d^0(G)$. Nilai $\dis_1^0(G)$ dari beberapa kelas graf telah diselidiki pada beberapa penelitian lain. Pada penelitian ini, penyelidikan dilakukan terhadap nilai $\dis_d^0(G)$ untuk beberapa kelas graf dengan $d\in \mathbb{Z}^+$. Berdasarkan penyelidikan tersebut, diperoleh nilai eksak dari $\dis_d^0(G)$ untuk graf tangga segitiga $\mathbb{L}_n$ dengan $d=1$ untuk beberapa nilai $n \pmod 5$ dan dengan $d=2$ untuk beberapa nilai $n \pmod 9$. Secara umum diperoleh nilai $\dis_d^0(\mathbb{L}_n)$ dengan $d\in \mathbb{Z}^+$ untuk $n\equiv 2d+1 \pmod{4d+1}$. Hasil lain yang diperoleh adalah nilai $\dis_d^0(G)$ untuk graf lintasan $P_n$, dengan $d$ dan $n$ adalah bilangan genap, yang disimpulkan berdasarkan hasil observasi hubungan antara graf lintasan dan graf tangga segitiga. Penyelidikan lebih jauh terhadap graf lintasan menghasilkan kesimpulan terkait nilai $\dis_d^0(P_n)$ dengan $d=2$ dan 4 untuk beberapa bilangan ganjil $n$ serta $d=3$ untuk beberapa nilai $n \pmod 7$. Selanjutnya, memanfaatkan hasil pada graf lintasan, disimpulkan nilai $\dis_d^0(G)$ untuk graf kipas $f_n$. Terakhir, penyelidikan dilakukan terhadap hasil korona antara graf komplit $K_m$ dan komplemen graf komplit $\overline{K_n}$. Hasil yang diperoleh adalah nilai $\dis_d^0(K_m \circ \overline{K_n})$ dengan $d=1$.
Let $G$ be a simple graph. The distance between two vertices $u$ and $v$ in $G$ is the length of the shortest path between those vertices. The set of vertices in graph $G$ which have distance up to $d$ from vertex $v$ is denoted by $N_d(v)$. An inclusive $d$-distance vertex irregularity labeling of a graph $G$ is a vertex labeling where the weights of vertices are distinct. The weight of vertex $v$ in this labeling is the sum of all labels of vertices in $N_d(v)$ and the label of $v$ itself. The minimum value of the largest label used in such labeling is called inclusive $d$-distance vertex irregularity strength of $G$ and denoted by $\dis_d^0(G)$. The value of $\dis_1^0(G)$ of some graph classes are already investigated in some other researches. In this research, investigations are carried out on the value of $\dis_d^0(G)$ for some classes of graph with $d \in \mathbb{Z}^+$. Based on the investigations, the exact value of $\dis_d^0(G)$ for triangular ladder graph $\mathbb{L}_n$ for some value of $n \pmod 5$ with $d=1$ and for some value of $n \pmod 9$ with $d=2$ are obtained. In general, the value of $\dis_d^0(G)$ with $d\in \mathbb{Z}^+$ is obtained for $n\equiv 2d+1 \pmod{4d+1}$. Another result obtained is the value of $\dis_d^0(G)$ for path $P_n$, with $d$ and $n$ even numbers, that is concluded based on the observation result between path and triangular ladder graph. Further investigation on path concludes the value of $\dis_d^0(Pn)$ with $d=2$ and 4 for some odd numbers $n$ and $d=3$ for some value of $n\pmod 7$. Furthermore, using the result on path, the value of $\dis_d^0(G)$ for the fan graph $f_n$ is concluded. Finally, an investigation is carried out on the result of corona operation between complete graph $K_m$ and its complement graph $\overline{K_n}$. The result obtained is the value of $\dis_d^0(K_m \circ \overline{K_n})$ with $d=1$.
"