Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 3 dokumen yang sesuai dengan query
cover
Penner, R.C.
New Jersey : Princeton University Press, 1992
511.6 PEN c
Buku Teks SO  Universitas Indonesia Library
cover
Aji Luhur Bhakti Imanudin Firdaus
"Geometri hiperbolik H^n, n>=2, merupakan salah satu contoh geometri non-Euclid. Pada artikelnya, Jeffers (2000) memberikan teorema mengenai bijeksi yang mempertahankan geodesik. Teorema tersebut menyatakan bahwa bijeksi yang mempertahankan geodesik di H^n adalah isometri. Pada kajian ini diberikan rincian bukti teorema di bidang hiperbolik H^2 dengan menggunakan model upper half plane.

Hyperbolic geometry H^n, n>=2, is one of the example of non-Euclid Geometry. In his article, Jeffers (2000) present a theorem regarding bijection that preserves geodesic. The theorem states that bijection which preserves geodesic in H^n is an isometry. In this paper the proof of theorem in hyperbolic plane H^2 will be given with detail using upper half plane model."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
"The purpose of these lecture notes is to provide an introduction to the theory of complex Monge–Ampère operators (definition, regularity issues, geometric properties of solutions, approximation) on compact Kähler manifolds (with or without boundary). These operators are of central use in several fundamental problems of complex differential geometry (Kähler–Einstein equation, uniqueness of constant scalar curvature metrics), complex analysis and dynamics. The topics covered include, the Dirichlet problem (after Bedford–Taylor), Monge–Ampère foliations and laminated currents, polynomial hulls and Perron envelopes with no analytic structure, a self-contained presentation of Krylov regularity results, a modernized proof of the Calabi–Yau theorem (after Yau and Kolodziej), an introduction to infinite dimensional riemannian geometry, geometric structures on spaces of Kähler metrics (after Mabuchi, Semmes and Donaldson), generalizations of the regularity theory of Caffarelli–Kohn–Nirenberg–Spruck (after Guan, Chen and Blocki) and Bergman approximation of geodesics (after Phong–Sturm and Berndtsson).
Each chapter can be read independently and is based on a series of lectures by R. Berman, Z. Blocki, S. Boucksom, F. Delarue, R. Dujardin, B. Kolev and A. Zeriahi, delivered to non-experts. The book is thus addressed to any mathematician with some interest in one of the following fields, complex differential geometry, complex analysis, complex dynamics, fully non-linear PDE's and stochastic analysis.
"
Berlin: Springer, 2012
e20420310
eBooks  Universitas Indonesia Library