Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 3 dokumen yang sesuai dengan query
cover
Febrizal
"Masalah utama pada saluran Radio Over Fiber (RoF) adalah terjadinya penurunan daya pada sinyal radio frequency (RF) yang di-recovery di receiver karena adanya dispersi kromatik fiber. Fenomena ini dikenal dengan dispersion power fading (DPF). Salah satu metode yang digunakan untuk mengatasi DPF adalah dengan menggunakan skema modulasi Optical Single Sideband (OSSB). Skema modulasi OSSB dapat dibangkitkan dengan mem-bias Dual-Drive Mach-Zehnder modulator (DD-MZM) pada quadrature bias point (QBP) dan membedakan fasa input RF (q) kedua lengan DD-MZM sebesar 90°. Kelemahan dari metode ini adalah tidak dapat mengatasi DPF secara efektif pada pada indeks modulasi (m) > 0.1. Untuk mengatasi DPF secara efektif pada m > 0.1, nilai q dalam penelitian ini dibedakan secara irregular. Ada dua rangkaian DD-MZM yang digunakan pada penelitian ini yaitu DD-MZM tanpa carrier arm (CA) dan DD-MZM dengan CA. Tingkat DPF dari saluran RoF dalam penelitian ini diukur menggunakan deviaton factor (DF). Semakin kecil nilai DF berarti tingkat DPF dari saluran RoF juga kecil. DF dari saluran RoF dengan modulasi OSSB pada m = 1 sebesar 0.9. DF dari saluran RoF yang menggunakan θ irregular pada DD-MZM tanpa CA sebesar 0.1 dan yang menggunakan θ irregular pada DD-MZM dengan CA sebesar 0.03. Ini berarti θ irregular dapat mengatasi DPF lebih baik dari OSSB.

The main problem with Radio Over Fiber (RoF) channels is that there is a reduction in the power of the recovered radio frequency (RF) signal at the receiver, due to the presence of fiber chromatic dispersion. This phenomenon is known as dispersion power fading (DPF). One of the methods used to overcome DPF is by using the Optical Single Sideband (OSSB) modulation scheme. The OSSB modulation scheme can be generated by biasing the Dual-Drive Mach-Zehnder modulator (DD-MZM) at the quadrature bias point (QBP) and differentiating the RF input phase (q) of the two DD-MZM arms by 90°. The weakness of this method is that it cannot overcome DPF effectively at the modulation index (m) > 0.1. To overcome DPF effectively at m > 0.1, the q value in this study was differentiated irregularly. There are two series of DD-MZM used in this research, namely DD-MZM without carrier arm (CA) and DD-MZM with CA. The DPF level of the RoF channel in this study was measured using the deviaton factor (DF). The smaller the value of DF means that the DPF level of the RoF channel is also small. DF from RoF channel with OSSB modulation at m = 1 is 0.9. DF of RoF channel using θ irregular on DD-MZM without CA is 0.1 and those using θ irregular on DD-MZM with CA is 0.03. This means that irregularities can handle DPF better than OSSB.
"
Depok: Fakultas Teknik Universitas Indonesia, 2020
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Hanna Putri Shabira
"Teknologi mengalami banyak perkembangan dalam 10 tahun terakhir ini salah satunya adalah dalam bidang telekomunikasi. Kebutuhan ini mendorong lahirnya 5G yang diharapkan dapat mendukung Massive Machine Type Communication (mMTC), Enhanced Mobile Broadband (eMBB), dan Ultra-Reliable and Low Latency Communication (uRLLC). Dalam mendukung aplikasi ini dibutuhkan kecepatan pengiriman data yang tinggi terutama pada jaringan fronthaul untuk mendukung akses radio ke pengguna. Gelombang milimeter (mmWave) dapat mengakomodasi radio dengan kecepatan tinggi dan latensi yang rendah sehingga dapat digunakan untuk aplikasi fronthaul 5G di daerah padat penduduk. Penelitian ini merancang sistem Wavelength Division Multiplexing (WDM) Radio over Fiber (RoF) berbasis gelombang milimeter dan melakukan optimasi sistem dengan fiber bragg grating (FBG). Hasil penelitian menunjukkan rancangan sistem WDM-Radio over Fiber telah memenuhi standar untuk skema downstream pada jarak 20 km dengan peak bit rate 20 Gbps, sedangkan skema upstream dengan peak bit rate 10 Gbps. Rancangan sistem WDM Radio over Fiber berbasis gelombang milimeter tersebut berhasil dicapai karena adanya pengaruh dari penambahan Fiber Bragg Grating (FBG) dan Semiconductor Optical Amplifier (SOA). SNR rangkaian final mengalami penurunan sebesar 5,55% untuk downstream dan 4,4% untuk upstream akibat penambahan komponen seperti penguat sinyal dan kompensator pada rangkaian.

Technology has undergone many developments in the past 10 years, one of which is in the field of telecommunications. This need has driven the emergence of 5G, which is expected to support Massive Machine Type Communication (mMTC), Enhanced Mobile Broadband (eMBB), and Ultra-Reliable and Low Latency Communication (uRLLC). Supporting these applications requires high-speed data delivery, especially in fronthaul networks to support radio access to users. Millimeter waves (mmWave) are capable of providing high-speed radio transmission with low latency, making them suitable for 5G fronthaul applications in densely populated areas. This research designs a Wavelength Division Multiplexing (WDM) Radio over Fiber (RoF) system based on millimeter waves and optimizes the system with fiber Bragg grating (FBG). The research results show that the WDM-Radio over Fiber system design has met the standards for downstream schemes at a distance of 20 km with a peak bit rate of 20 Gbps, while the upstream scheme with a peak bit rate of 10 Gbps. The WDM Radio over Fiber system design based on millimeter waves was successfully achieved due to the influence of the addition of Fiber Bragg Grating (FBG) and Semiconductor Optical Amplifier (SOA). The SNR of the final circuit decreased by 5.55% for downstream and 4.4% for upstream due to the addition of components such as signal amplifiers and compensators in the design."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Syafiq Maulana Al Faruq
"Kebutuhan pada jaringan komunikasi dengan kecepatan dan kapasitas yang tinggi terus meningkat seiring dengan berkembangnya teknologi informasi dan komunikasi. Teknologi 5G yang diterapkan pada Radio over Fiber yang disertai Wavelength Division Multiplexing dapat memenuhi kebutuhan tersebut. Dilakukan penelitian untuk mengetahui faktor-faktor yang berpengaruh terhadap transmisi Radio over Fiber yang melingkupi data rate, panjang kabel fiber optik, dan frekuensi radio. Dengan mengetahui pengaruh dari faktor-faktor tersebut, dilakukan perancangan skema fronthaul berbasis fiber optik yang mendukung aplikasi 5G. Hasil penelitian menunjukkan peningkatan data rate menghasilkan peningkatan kemungkinan terjadinya inter-symbol interference (ISI) dan peningkatan frekuensi radio meningkatkan kapasitas sebelum akhirnya mengalami saturasi pada frekuensi 40 Ghz, sedangkan panjang kabel fiber optik tidak memberikan pengaruh yang signifikan. Perancangan skema fronthaul dilakukan dengan frekuensi radio 26 GHz yang disertai penggunaan WDM, optical amplifier, dan dispersion compensating fiber (DCF). Simulasi pada skema upstream dan downstream yang dilakukan menunjukkan bahwa rancangan telah memenuhi target spesifikasi yang ditetapkan ITU dengan Q factor lebih besar dari 6 dan BER lebih kecil dari 10-9 pada setiap kanal. Penelitian dapat dikembangkan dengan menggunakan frekuensi radio yang tinggi dengan data rate yang lebih besar dan jangkauan kabel fiber optik yang lebih jauh.

The demand for high-speed and high-capacity communication networks continues to increase along with the advancement of information and communication technology. 5G technology applied to Radio over Fiber accompanied by Wavelength Division Multiplexing (WDM) can meet these needs. A study was conducted to identify the factors affecting Radio over Fiber transmission, which include data rate, fiber optic cable length, and radio frequency. By understanding the impact of these factors, a fiber optic-based fronthaul scheme supporting 5G applications was designed. The study results show that increasing the data rate leads to a higher likelihood of inter-symbol interference (ISI), and increasing the radio frequency enhances capacity until it saturates at 40 GHz, while the fiber optic cable length does not have a significant impact. The fronthaul scheme was designed using a 26 GHz radio frequency, accompanied by WDM, optical amplifiers, and dispersion compensating fiber (DCF). Simulations of the upstream and downstream schemes demonstrated that the design meets the ITU's target specifications with a Q factor greater than 6 and a BER less than 10^-9 for each channel. The research can be further developed by utilizing higher radio frequencies with higher data rates and longer fiber optic cable reach."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library