Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 5 dokumen yang sesuai dengan query
cover
Charlotte Sortauli Agnetia
Abstrak :
Terak feronikel mengandung banyak unsur berharga seperti Nikel, Kobalt, Besi, dan Logam Tanah Jarang. Tetapi teknologi untuk memrosesnya masih dalam tahap pengembangan. Tujuan dari studi ini adalah untuk mengetahui temperatur dan konsentrasi aditif Na2CO3 optimum untuk terjadinya reaksi dekomposisi dari magnesium silikat, besi silikat, dan natrium karbonat, yang akan menghasilkan natrium silikat, magnesium oksida, dan besi oksida. Terak dan natrium karbonat dicampur dengan tiga konsentrasi yang berbeda (terak : natrium karbonat; 80:20; 40:60; 60:40) menggunakan ball mill selama 5 menit. Sampel lalu dikompaksi menggunakan mesin kompaksi hydraulic. Berat masing-masing sampel adalah 10 gram. Roasting lalu dilakukan pada temperatur 900 °C dan 1100 °C untuk ketiga konsentrasi yang berbeda dengan holding time selama 1 jam dan laju pemanasan 10 °C /min. Dapur yang digunakan untuk roasting adalah tube furnace. Produk hasil roasting lalu dilakukan uji SEM/EDS, XRD, dan ICP-OES. Berdasarkan hasil karakterisasi SEM/EDS dan XRD diketahui bahwa beberapa produk yang terdeteksi setelah roasting antara lain adalah hematit, magnetit, magnesium oksida, dan Na2SiO3. Hasil dari studi ini juga menunjukkan bahwa kamacite hanya terdeteksi pada sampel yang diroasting pada temperatur 1100 °C. Berdasarkan hasil penelitian, dapat disimpulkan bahwa parameter pengujian 20% aditif dengan roasting pada temperatur 1100 °C merupakan kombinasi temperatur dan konsentrasi yang optimal untuk mendekomposisi terak feronikel. ......Ferronickel slag contains a lot of valuable elements like Nickel, Cobalt, Iron, and Rare Earth Elements. But the technology to process it is still in development. The purpose of this study is to find the optimum temperature and Na2CO3 additive composition for the roasting of ferronickel slag in order to achieve decomposition reaction of magnesium silicate, iron silicate, and sodium carbonate, which results in the formation of sodium silicate, magnesium oxide, and iron oxide. Slag and sodium carbonate were mixed with 3 different composition variation (slag : sodium carbonate; 80:20; 40:60; 60:40) using a ball mill for 5 minutes. The sample was then compacted using a hydraulic compacting machine. The weight of each compacted sample is 10 grams. Roasting was then conducted at 900 °C and 1100 °C for the 3 different compositions with the holding time being 1 hour and the heating rate 10°C/min. The furnace that was used for both temperature is tube furnace. The roasted products were then characterized by SEM/EDS, XRD, and ICP OES. Based on SEM/EDS and XRD characterizations, some of the products that were detected in roasted samples are hematit, magnetit, magnesium oxide, and Na2SiO3. The result of this study shows that kamacite is only detected in samples that were roasted at 1100 °C. Based on the results of this study, it can be concluded that the testing parameter of 20% additive, roasted at 1100 °C is the most optimal temperature and additive concentration combination to decompose ferronickel slag.
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rayhan Hafiz
Abstrak :
Dalam proses produksi feronikel dari bijih nikel laterit diperlukan energi yang besar. Metode reduksi selektif sedang dikembangkan untuk memproses bijih nikel laterit untuk menghasilkan kadar nikel yang tinggi dan efektif tanpa memerlukan energi yang besar. Pada penelitian ini telah dipelajari proses reduksi selektif bijih nikel laterit dangan kandungan alumina tinggi menggunakannatrium sulfat, kalsium sulfat, dan magnesium sulfat sebagai aditif dengan variasi dosis 5%, 10%, dan 15% berat. Batu bara antrasit digunakan sebagai reduktor pada penelitian ini sebanyak 5% berat. Reduksi dilakukan pada variasi temperatur 950, 1050, dan 1150oC selama 60 menit. Proses separasi magnetik basah dengan kekuatan magnet 500 Gauss dilakukan pada tahapan setelah reduksi untuk memisahkan konsentrat (feronikel) yang bersifat magnetik dan tailing (pengotor) yang bersifat non-magnetik. Karakterisasi bijih laterit hasil reduksi dilakukan menggunakan X-ray Diffraction (XRD), mikroskop optik, dan Scanning Electron Microscope (SEM) yang dilengkapi Energy Dispersive X-ray Spectroscopy (EDS). Konsentrat dan tailing hasil separasi magnetik diidentifikasi menggunakan X-ray Fluororescene (XRF). Hasil penelitian ini menunjukkan bahwa kadar nikel optimum didapatkan pada temperatur reduksi 1150°C dengan nilai 0,702% untuk penambahan aditif natrium sulfat; 0,757% untuk penambahan aditif magnesium sulfat; dan 0,932% untuk penambahan aditif kalsium sulfat. penambahan masing-masing aditif sebesar 15% berat.
In the process of producing ferronickel from laterite nickel ore, a large amount of energy is needed. Selective reduction methods are being developed to process laterite nickel ore to produce high and effective nickel content without requiring large amounts of energy. In this study, the selective reduction of nickel laterite containing high alumina content has been investigated by using sodium sulfate, calcium sulfate, and magnesium sulfate as additives with varying doses of 5%, 10%, and 15% wt. Anthracite coal was used as a reducing agent in this study by 5% weight. Reduction was conducted with variations in temperature of 950 oC, 1050 oC, dan 1150 oC for 60 minutes. Wet magnetic separation process with a magnetic strength of 500 Gauss is then carried out in the process after selective reduction to separate the magnetic concentrate (ferronickel) and the non-magnetic tailing (impurities). Characterization of the reduced ore laterite was performed using X-Ray Diffraction (XRD), optical microscopy, and Scanning Electron Microscope (SEM) equipped with Energy Dispersive X-ray Spectroscopy (EDS). The result of concentrate and tailing from magnetic separation were identified using X-ray Fluororescene (XRF). The results of this study indicate that the optimum nickel grade was obtained at a reduction temperature of 1150 °C with a value of 0.702% for the sodium sulfate additives; 0.757% for the magnesium sulfate additives; and 0.932% for the calcium sulfate additives withthe addition for each additive was 15% by weight.
Depok: Fakultas Teknik Universitas Indonesia , 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fadhlurrahman Rafif
Abstrak :
Terak Feronikel merupakan salah satu limbah yang diperoleh pada proses pemurnian dengan tanur listrik saat proses mengolah mineral nikel menjadi produk feronikel. Pada penelitian ini sampel awal yang digunakan adalah terak feronikel yang telah dilakukan proses roasting dengan aditif natrium carbonat (Na2CO3). Produk dari hasil roasting ini dilakukan proses reduksi karbotermik dengan reduktor berupa sekam padi bakar, serta batu bara sebagai reduktor pembanding. Penggunaan sekam padi bakar akan dijadikan sebagai alternatif reduktor murah dan ramah lingkungan dibandingkan penggunaan batu bara. Sampel awal (roasted product) dilakukan pengujian XRD dan SEM-EDS, sedangkan kedua jenis reduktor diuji proximate dan ultimate. Persiapan awal dilakukan dengan menghaluskan dan mencampurkan roasted product dan reduktor dengan menggunakal ball mill selama satu jam. Rasio penambahan kedua jenis reduktor masing-masing, yaitu 15% wt, 20% wt, dan 25% wt. Setiap campuran pada setiap variabel akan dikompaksi untuk memperoleh bentuk silinder sebesar 10 gram. Proses reduksi karbotermik akan dilakukan pada horizontal tube furnace temperatur 1100oC dengan waktu tahan selama satu jam. Waktu dan temperatur reduksi digunakan untuk setiap variabel yang digunakan. Selanjutnya, hasil reduksi karbotermik akan dilakukan karakterisasi dengan pengujian XRD dan SEM-EDS untuk diketahui perubahan senyawa yang terbentuk setelah proses reduksi. Hasil XRD yang diperoleh adalah terbentuknya senyawa reduksi besi oksida berupa magnetit (Fe3O4) dan logam besi (Fe). Variabel optimal diperoleh pada setiap penambahan reduktor 15% di kedua jenis reduktor, karena menunjukan hasil magnetit (Fe3O4) dan logam besi (Fe) dengan intensitas yang lebih tinggi. Hasil SEM-EDS juga mendukung hasil XRD dengan menunjukan unsur Fe lebih mendominasi pada penambahan 15%. Jika dibandingkan reduktor batu bara, reduktor sekam padi bakar masih memiliki hasil reduksi yang lebih rendah dikarenakan kadar karbon tetap yang lebih rendah dan tingginya kadar debu yang dapat menghambat proses reduksi. Namun, nilai sulfur yang sangat rendah dapat menjadikan reduktor sekam padi bakar menjadi lebih ramah lingkungan dengan hasil yang tidak jauh berbeda. ...... Ferronickel slag is one of the wastes obtained in the refining process by an electric furnace when processing nickel minerals into ferronickel products. In this study, the initial sample used was ferronickel slag which had been roasted with sodium carbonate additive (Na2CO3). The reducing agent used is rice husk and coal as a comparative reducing agent. The use of roasted rice husk will be used as an alternative to cheap and environmentally friendly reducing agents compared to coal. The initial sample (roasted product) was tested for XRD and SEM-EDS, while the two types of the reducing agents were tested proximate and ultimate. The initial preparation is done by milling and mixing roasted products and reductants by using a ball mill for one hour. The ratio of the addition of the two types of reducing agents respectively, namely 15% wt, 20% wt, and 25% wt. Each mixture on each variable will be compacted to obtain a cylindrical shape of 10 grams. The carbothermic reduction process will be carried out at a horizontal tube furnace temperature of 1100oC with a holding time of one hour. Reduction time and temperature are used for each variable used. Furthermore, the results of carbothermic reduction will be characterized by XRD and SEM-EDS tests to determine the changes in compounds formed after the reduction process. The XRD results obtained are the formation of iron oxide reduction compounds in the form of magnetite (Fe3O4) and ferrous metal (Fe). Optimal variables are obtained for each addition of 15% reductant in both types of reducing agents because it shows the results of magnetite (Fe3O4) and ferrous metal (Fe) with a higher intensity. The SEM-EDS results also support XRD results by showing that the Fe element is more dominant at an additional 15%. When compared to coal reducing agents, reducing rice husk reducing agents still have lower reduction results due to lower fixed carbon content and high dust content which can inhibit the reduction process. However, a very low sulfur value can make the rice husk reducing agent become more environmentally friendly with results that are not much different.
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhamad Mushabhanif Ghazy
Abstrak :
Terak feronikel merupakan limbah hasil proses pengolahan bijih nikel laterit yang masih memiliki logam berharga tersisa seperti besi atau nikel dan dapat direduksi dengan menggunakan reduktor berbasis karbon. Tujuan dari penelitian ini adalah untuk mengetahui pengaruh dari penggunaan reduktor arang batok kelapa sebagai reduktor biomassa dengan variasi konsentrasi tertentu terhadap produk hasil reduksi terak feronikel hasil roasting. Proses roasting dilakukan dengan menggunakan aditif Na2CO3 sebanyak 20% untuk mendekomposisi fayalit. Proses reduksi karbotermik dilakukan dengan tiga variasi konsentrasi reduktor yang berbeda (15%, 20% dan 25%) dengan berat sampel 10 gram. Proses roasting dan reduksi dilakukan pada tube furnace dengan temperatur 1100oC selama 60 menit dan laju pemanasan 10°C/menit. Produk hasil roasting dan reduksi akan dilakukan karakterisasi dengan metode XRD dan SEM – EDS. Hasil karakterisasi menunjukkan bahwa dihasilkan produk hasil proses pemanggangan berupa fayalit, hematit, silika serta natrium silikat dan produk hasil reduksi berupa hematit, magnetit dan logam Fe. Arang batok kelapa memiliki kadar karbon tertambat yang cukup banyak sehingga dihasilkan gas pereduksi dalam jumlah yang memadai untuk menghasilkan produk reduksi yang sama dengan batu bara. Pada penilitian ini, berdasarkan hasil karakterisasi yang diperoleh terlihat bahwa pengunaan 15% reduktor merupakan konsentrasi yang optimum untuk mereduksi terak feronikel hasil roasting. ......Ferronickel slag is waste product from the lateritic nickel ores which still have valuable metals such as iron or nickel and can be reduced by using carbon-based reductant. The purpose of this study is to determine the effect of coconut shell charcoal as biomass reductant with various concentration variations to reduction product of roasted product ferronickel slag. Roasting process is using 20% additive ​​Na2CO3 to decompose fayalite. Carbothermic reduction will using three different variations of reductant concentration (15%, 20% and 25%) with the sample weight is 10 grams. The Roasting and reduction will be conducted in tube furnace in temperature 1100oC for 60 minutes and the heating rate is 10°C/minute. The product from roasting and reduction process will be characterized by XRD and SEM-EDS. The characterization results showed that the roasted product contains fayalite, hematite, silica and sodium silicate then reduction product contains hematite, magnetite and Fe metal. Coconut shell charcoal has high amount of fixed carbon so it will generate considerable amount of reducing gas to produce the same reduction products as coal. Based on the characterization results in this study it can be seen that 15% reductant is the optimum concentration for reducing roasted product ferronickel slag.
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Agus Budi Prasetyo
Abstrak :
Terak Feronikel (TFN) merupakan produk sampingan yang dihasilkan dari proses peleburan nikel dengan metode pirometalurgi. Potensi TFN yang dimanfaatkan saat ini yaitu untuk konstruksi jalan, bahan campuran dalam industri semen dan aplikasi lain seperti pupuk, geopolimer dan teknik hidraulik. Namun demikian, proses keberlanjutan pemanfaatan TFN diperlukan karena produksi TFN meningkat sejalan dengan peningkatan permintaan nikel. Apalagi TFN merupakan bahan berbahaya dan beracun yang mampu mencemari tanah dan air tanah bila disimpan dalam waktu lama. Oleh karena itu, upaya peningkatan nilai tambah TFN perlu dilakukan untuk menekan akumulasi produk TFN. TFN mengandung sekitar 30% silika, 20% magnesium, 12% besi, 1-2% aluminium, dan serta nikel (Ni), kobalt (Co), kromium (Cr), dan unsur logam tanah jarang (LTJ) . Berdasarkan kandungan yang ada di dalam TFN tersebut, proses ekstraksi unsur berharga menarik untuk dilakukan guna meningkatkan nilai tambah TFN. Tujuan umum dari penelitian ini adalah memanfaatkan terak feronikel sebagai upaya peningkatan nilai tambah dengan mengekstraksi logam berharga dan logam tanah jarang terutama untuk lanthanum dan cerium dengan proses piro-hidrometalurgi. Tujuan khusus yang ingin dicapai dalam penelitian ini adalah untuk mengetahui analisis karakteristik TFN, studi pengaruh proses redusksi, studi pengaruh kalsinasi dan pelindian NaOH , studi pengaruh proses fusi alkali, pelindian air dan pelindian HCl, serta studi pengembangan proses ekstraksi logam berharga dari TFN. Penelitian dilakukan dengan beberapa tahapan, bahan baku berupa TFN dikeringkan dalam oven, kemudian dilakukan reduksi ukuran menggunakan crusher dan disc mill. Bahan baku TFN dengan ukuran -200 mesh dicampur aditif Na2CO3 menggunakan mixer. Proses reduksi dilakukan dengan penambahan karbon dari batubara (BB) dan arang cangkang kelapa sawit (CKS) ditambah dengan zat aditif Na2CO3. Reduksi dilakukan dengan variasi temperature, rasio batubara atau arang cangkang kelapa sawit dan rasio Na2CO3. Proses kalsinasi dilakukan pada temperature 700°C selama 1 jam dilanjutkan dengan proses pelindian NaOH dengan variasi konsentrasi NaOH, temperatur dan waktu pelindian. Pelindian dengan NaOH ini silakukan untuk memisahkan silica dengan magnesium. Silika yang terpisah dijadikan produk samping sebagai silica presipitat. Proses fusi alkali dengan penambahan aditif dilakukan dengan variasi temperatur. Pemanggangan dengan penambahan aditif diharapkan dapat mengikat silika yang merupakan unsur paling melimpah di TFN. Hasil pemanggangan fusi alkali kemudian dilindi dengan air. Residu yang dihasilkan dari pelindian air ini, kemudian dilindi menggunakan HCl. Sedangkan filtrat hasil pelindian air diendapkan dengan asam HCl encer secara titrasi untuk mendapatkan endapan silica presipitat. Analisis dilakukan dengan menggunakan X-Ray Diffraction (XRD), X-Ray Fluorescence (XRF), Scanning Electron Microscopy (SEM) dan Inductively Coupled Plasma OES (ICP-OES). Hasil penelitian ini menunjukkan bahwa proses reduksi menghasilkan fasa dominan yang terbentuk yaitu sodium magnesiosilikat. Proses kalsinasi dilanjutkan NaOH menghasilkan persentase perolehan magnesium tertinggi adalah 73,10%, yang dihasilkan dari proses pelindian pada temperatur 100°C selama 240 menit dengan menggunakan NaOH 10M. Proses fusi alkali dengan penambahan zat aditif dapat mengikat silika yang merupakan unsur utama di TFN. Pelindian dengan air dari hasil fusi alkali dapat melarutkan silika dalam bentuk senyawa sodium silikat. Silika yang terlarut selanjutnya diendapkan dengan proses presipitasi untuk mendapatkan silika presipitat. Sedangkan residu hasil pelindian yang sudah mempunyai konsentrasi magnesium dan LTJ (lantanum dan cerium) dilakukan pelindian asam. Pelindian asam menggunakan larutan HCl dilakukan untuk mengekstrak kandungan magnesium dan LTJ (lanthanum dan cerium) yang terlarut dalam larutan filtrat. Hasil optimum ekstraksi magnesium dari pelindian asam menggunakan larutan HCl adalah 82,67 %. Kondisi optimum dicapai pada temperatur pelindian 80 °C, waktu pelindian 30 menit, konsentrasi HCl 2M, kecepatan pengadukan 300 rpm dan rasio S/L 1:10. Pada kondisi tersebut, studi kinetika magnesium menunjukkan bahwa proses pelindian magnesium pada TFN dipengaruhi oleh difusi. Kondisi pelindian optimum ekstraksi cerium dan lanthanum dicapai pada temperatur pelindian 80 °C, waktu pelindian 30 menit dan konsentrasi HCl 8 M dengan persentase ekstraksi optimum 92,63 % dan 86,82 %. Hasil studi kinetika menunjukkan nilai energi aktivasi ≤ 40 kJ/mol, sehingga difusi melalui lapisan abu akan mengontrol proses pelindian tersebut. Nilai energi aktivasi membuktikan bahwa pelindian cerium dan lanthanum dikendalikan oleh difusi melalui lapisan abu dari partikel padat dibandingkan dengan reaksi di permukaan partikel. ......Ferronickel slag (FNS) is a by-product which was resulted from a nickel smelting process with a pyro-metallurgical method. The potential of TFN currently being utilized is for road construction, mixed materials in the cement industry, and other applications such as fertilizers, geopolymers, and hydraulic engineering. However, the sustainability process for FNS utilization is required due to increasing FNS production which is in line with increasing nickel demand. Moreover, FNS is a hazardous and toxic material that capable to pollute the soil and groundwater when it has been stored for long period. Therefore, attempts to upgrade the added value of FNS needs to be carried out to inhibit FNS accumulation. FNS contains 30% of silica, 20% of magnesium, 12% of iron, 1-2% of aluminum, and a small amount of nickel (Ni), cobalt (Co), chromium (Cr), and rare earth elements (REE). Based on the FNS content, the extraction process of valuable content is attractive to perform to upgrade the added value of FNS. The general objective of this research is to utilize the ferronickel slag as an effort to upgrade the added value by extracting the rare earth metals, especially for lanthanum and cerium, using pyro-hydrometallurgy processes. The specific objectives to be achieved in this study were to determine the analysis of FNS characteristics, study the effect of the reduction process, study the effect of calcination and NaOH leaching, study the effect of the alkaline fusion process, water leaching, and HCl leaching, and study the development of the precious metal extraction process from FNS. The research carried out in several stages, the raw material in the form of FNS was dried in an oven, then size reduction was carried out using a crusher and disc mill. FNS raw material with a size of -200 mesh is mixed with Na2CO3 additive using a mixer. The reduction process is carried out by adding carbon from coal and palm kernel shell charcoal plus the additive Na2CO3. The reduction is done by varying the temperature, the ratio of coal or oil palm charcoal, and the ratio of Na2CO3. The calcination process was carried out at a temperature of 700 ° C for 1 hour followed by a NaOH leaching process with variations in the concentration of NaOH, temperature, and leaching time. This NaOH leaching is carried out to separate the silica from magnesium. The separated silica is used as a byproduct as silica precipitates. Alkali fusion process with the addition of additives is carried out with temperature variations. Roasting with the addition of additives is expected to bind Silica which is the most abundant element in the FNS. The roasting results are then leached with water. The residue resulting from the water leaching is then leached using HCl. Meanwhile, the filtrate from the water leaching was precipitated with dilute HCl acid by titration to obtain precipitated silica precipitates. Also, leaching is carried out using alkali NaOH. Analyzes were performed using X-Ray Diffraction (XRD), X-Ray Fluorescence (XRF), Scanning Electron Microscopy (SEM), and Induced Coupled Plasma OES (ICP-OES). The results of this study indicate that the reduction process produces the dominant phase formed, namely sodium magnesiosilicate. The calcination process followed by NaOH resulted in the highest percentage of magnesium recovery, which was 73.10%, which was produced from the leaching process at 100 ° C for 240 minutes using 10M NaOH.The results of this study indicate that the alkali fusion process with the addition of additives can bind Silica as a major impurity element. Leaching with water can dissolve Silica in the form of sodium silicate which was resulted from alkali fusion. Dissolved silica can be used further as a material for Silica Precipitate, which can be obtained by precipitation. Meanwhile, the leaching residue is concentrated on valuable metals (magnesium) including rare earth elements (lanthanum, and cerium). Acid leaching using HCl solution was performed to calculate the upgrading content of dissolved magnesium, lanthanum, and cerium in the leached solution. The optimum result of magnesium extraction from acid leaching using HCl solution is 82.67%. The optimum condition reaches at leaching temperature of 80 °C, leaching time of 30 minutes, HCl concentration of 2 M, stirring speed of 300 rpm, and S/L ratio of 1/10. In that condition, Kinetics studies of magnesium show that the Magnesium leaching process of FNS was influenced by diffusion. The optimum leaching condition of cerium and lanthanum extractions reach at leaching temperature of 80 ⁰C, leaching time of 30 minutes, and HCl concentration of 8 M with optimum extraction percentage of 92.63% and 86, 82% respectively. The results of the kinetics study showed that the activation energy value was ≤ 40 kJ/mol, thus the diffusion through the ash layer would control the leaching process. The activation energy values prove that the release of cerium and lanthanum is controlled by diffusion through the ash layer of the solid particles compared to the reaction at the particle surface.
Depok: Fakultas Teknik Universitas Indonesia, 2021
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library