Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 21 dokumen yang sesuai dengan query
cover
Theresia Diah Kusumaningrum
Abstrak :
ABSTRAK
Deteksi dan pengenalan wajah merupakan salah satu pengolah citra yang dapat digunakan untuk surveillance pada UAV. Namun kasus pengenalan wajah dan deteksi wajah ini merupakan pekerjaan yang sangat sulit dilakukan karena komputer harus dapat melakukan lokalisasi wajah dengan baik kemudian melakukan klasifikasi wajah. Tesis ini membahas penelitian metode deep learning yaitu deteksi wajah dengan menggunakan metode RCNN dan pengenalan wajah dengan menggunakan metode CNN. Eksperimen dengan menggunakan variasi sudut wajah dan jarak wajah terhadap kamera dilakukan untuk mengamati pengaruh parameter terhadap performa model. Hasil penelitian menunjukkan bahwa model RCNN dengan menggunakan satu wajah subjek dapat digunakan untuk melakukan deteksi wajah pada subjek dengan recognition rate sebesar 74% pada parameter IoU > 0.5. Nilai recognition rate pada sistem terintegrasi deteksi dan pengenalan wajah sangat tergantung dari hasil prediksi area wajah yang dihasilkan dari model RCNN. Percobaan membuktikan bahwa jarak subjek kamera mempengaruhi recognition rate dari model deteksi wajah.
ABSTRACT
Face detection and recognition is an image processor that can be used for surveillance on UAVs. However, the case of face recognition and face detection is a very difficult job to do because the computer must be able to do localization of the face well then do face classification. This thesis discusses the research of deep learning methods, namely face detection using the RCNN method and face recognition using the CNN method. Experiments using variations in face angle and face distance to the camera were conducted to observe the effect of parameters on the performance of the model. The results showed that the RCNN model using one subject's face could be used to detect faces on subjects with a recognition rate of 74% on the IoU parameter > 0.5. The value of recognition rate in the integrated detection and face recognition system is highly dependent on the results of the prediction of face areas generated from the RCNN model. Experiments prove that the distance of the camera subject affects the recognition rate of the face detection model.
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Yuni Arti
Abstrak :
Sistem pengenalan wajah dapat memberikan hasil yang tepat pada kondisi wajah normal, tetapi dalam lingkungan yang tidak dibatasi menyebabkan hasil pengenalan wajah menjadi tidak akurat, baik pada verifikasi maupun identifikasi. Salah satu masalah yang sering ditemui dalam sistem pengenalan wajah dan terkait dengan sifat intra-class variance pada wajah adalah pose. Penelitian ini bertujuan untuk melakukan pengenalan wajah berdasarkan pose invariant dengan mengimplementasikan Spatial Transformer Netwok (STN) pada arsitektur jaringan ringan MobileFaceNet. STN digunakan sebagai metode penyelarasan wajah untuk menangani variasi pose pada citra input. Berdasarkan evaluasi model, model Single-STN MobileFaceNet memberikan akurasi, AUC dan EER berturut-turut 73.64%, 82.18%, dan 0.2636. Kenaikannya sebesar 1.21% untuk akurasi, 1.56% untuk AUC dan untuk EER turun sebesar 0.0121 dari model Baseline. Penambahan STN pada jaringan ringan MobileFaceNet mempengaruhi hasil verifikasi wajah, tetapi kurang signifikan. Akan tetapi, berdasarkan hasil uji signifikansi McNemar, tidak ada perbedaan yang signifikan dengan adanya metode penyelarasan wajah STN pada model Single-STN MobileFaceNet. Terdapat beberapa kasus pose yang tidak dapat ditangani dengan baik oleh model, seperti pose menengadah atau menengok ke kanan/kiri. Berdasarkan evaluasi robustness model, nilai akurasi, AUC dan EER yang dihasilkan model Single-STN MobileFaceNet berturut-turut 96.86%, 98.51%, 0.0314. Model Single-STN MobileFaceNet termasuk model yang memiliki kinerja baik dalam pengenalan wajah, model mampu membedakan pasangan citra match dan non-match dengan baik pada dataset CFP ......The face recognition system can give precise results in normal facial conditions, but in an unconstrained environment it can result inaccurate face recognition, both in verification and identification. One of the problems that are often encountered in face recognition system and related to intra-class variance on the face is pose. This study aims to perform face recognition based on pose invariant by implementing Spatial Transformer Netwok (STN) on MobileFaceNet lightweight network architecture. STN is used as a face alignment method to handle pose variations in the input image. Based on the evaluation of the model, the Single-STN MobileFaceNet model provides accuracy, AUC and EER of 73.64%, 82.18%, and 0.2636, respectively. The increase is 1.21% for accuracy, 1.56% for AUC and for EER it is down by 0.0121 from the Baseline model. The addition of STN to the MobileFaceNet lightweight network affects the face verification results, but is less significant. However, based on the results of the McNemar significance test, there is no significant difference with the STN face alignment method in the Single-STN MobileFaceNet model. There are some cases of poses that cannot be handled well by the model, such as looking up or looking to the right/left. Based on the evaluation of the robustness of the model, the values ​​of accuracy, AUC and EER generated by the Single-STN MobileFaceNet model are 96.86%, 98.51%, 0.0314, respectively. The Single-STN MobileFaceNet model includes a model that has good performance in face recognition. This model is able to distinguish match and non-match image well on the CFP dataset.
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Christiana Rahayuningsih
Abstrak :
ABSTRAK
Wajah manusia mengandung banyak informasi dan antarmuka yang jelas dalam inleraksi antara manusia dan komputer. Hal ini telah memotivasi penelitian aktif di bidang pengenalan wajah, face tracking, pose estimation, pengenalan ekspresi, dan pengenalan mimik. Akan tetapi, sebagian besar metode tersebut mengasumsikan bahwa wajah manusia dalam suatu citra atau urutan citra telah diidentifikasi dan dilokalisasi. Untuk membangun suatu system otomatis sehingga kerja manusia dapat sepenuhnya ditangani oleh mesin, sangatlah penting untuk membangun algoritma yang handal dan efisien untuk mendeteksi wajah manusia.

Tujuan dari deteksi wajah adalah untuk mengidentifikasi dan menempatkan wajah manusia dengan posisi, skala, orientasi, dan kondisi pencahayaan tertentu. Dalam tugas skripsi ini, ditampilkan suatu algorilma deteksi wajah untuk grayscale image dengan latar belakang yang kompleks dan skala yang bervariasi. Agar dapat menangani citra masukan dengan skala yang berbesa-beda, dilakukan metode pyramid terhadap citra masukan. Metode yang digunakan dalam proses deteksi dikembangkan dari metode Principal Component Analysis (PCA) dengan pembobotan yang optimum untuk menghasilkan error criterion yang terbaik. Simulasi dil akukan dengan MATLAB versi 5.3.
2001
S39101
UI - Skripsi Membership  Universitas Indonesia Library
cover
Suryanoto Negoro
Abstrak :
Dengan beredarnya pandemi corona-virus (Covid-19) menuntut masyarakat untuk menjaga protokol kesehatan saat bepergian, salah satunya adalah menggunakan masker untuk mengurangi risiko terkena virus. Penggunaan masker juga disarankan oleh World Health Organization (WHO) agar digunakan saat beraktivitas dengan orang lain. Dengan mengacu hal tersebut, banyak perubahan yang terjadi pada teknologi yang digunakan sehari-hari, salah satunya adalah untuk sistem absensi. Apabila sebelum adanya Covid-19 absensi mahasiswa masih menggunakan buku tulis atau fingerprint, kini lebih baik beralih ke dalam sistem absensi berbasis face recognition dengan memanfaatkan salah satu algoritma deep learning, yaitu metode Convolutional Neural Network (CNN) untuk mengindentifikasi wajah seorang mahasiswa yang telah terdaftar. Dengan mengaplikasikan sistem absensi ini, memungkinkan mahasiswa untuk melakukan absensi tanpa terjadinya sentuhan langsung melalui media tangan. Bahasa pemrograman yang digunakan pada pengembangan aplikasi sistem absensi merupakan bahasa Python dengan implementasi Single Shot Detection (SSD) dan fitur ekstraksi ResNet. Evaluasi pengukuran pada sistem dilakukan pada situasi yang mempengaruhi kejelasan gambar dan model jumlah titik karakteristik yang berbeda. ......With the spread of the corona-virus (Covid-19) pandemic, it requires the public to maintain health protocols when traveling, one of them is to use masks to reduce the risk of infected the virus. The use of masks is also recommended by the World Health Organization (WHO) to be used when doing activities with other people. Because of this, many changes have occurred in the technology that used in daily, one of them is the attendance system. If before Covid-19 student attendance was still using notebooks or fingerprints, now it is better to switch to a face recognition-based attendance system by utilizing one of the algorithm deep learning, namely the Convolutional Neural Network (CNN) method to identify the face of a student who has been recorded in. By applying this attendance system, it allows students to take attendance without direct touch through hand media. The programming language used in making attendance system applications is Python with Single Shot Detection (SSD) implementation and ResNet extraction feature. Evaluation of measurements on the system is carried out on situations that affect image clarity and the model number of different characteristic points.
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Akhmad Mumtaz Firdaus
Abstrak :
Dampak wabah COVID yang mempengaruhi sektor pendidikan membuat pelajar dan juga tenaga pendidik diharuskan untuk melakukan pembelajaran secara daring. Penerapan pembelajaran melalui daring ini memberikan dampak terhadap pelajar khususnya pada mahasiswa. Dengan diterapkannya New Normal, dibutuhkan teknologi yang dapat melakukan pemantauan dengan skala yang besar. Penelitian ini bertujuan untuk membuat perangkat presensi mahasiswa berbasis face recognition dengan menambahkan fitur pembacaan suhu tubuh sebagai langkah pengawasan pada lingkungan kampus. Penelitian ini dilakukan pada area kampus FMIPA UI. Bahasa pemrograman yang digunakan untuk membuat perangkat lunak adalah python versi 3.6. Pada proses face recognition, digunakan metode Histogram of Oriented Gradients (HOG) sebagai pendeteksi lokasi wajah dan modul Openface untuk pengambilan fitur pada wajah. Untuk tahap pencocokan wajah, digunakan Euclidean Distance untuk mencari nilai kecocokan pada tiap citra database. Dari hasil pengujian terhadap 30 mahasiswa didapatkan akurasi sebesar 93.3%. Pada pengujian jarak terhadap pendeteksian wajah, didapatkan bahwa sistem dapat mendeteksi wajah hingga jarak 120 cm pada kondisi penerangan ruangan yang normal. Pada pengujian pembacaan suhu dengan menggunakan Thermal Camera AMG8833, didapatkan bahwa nilai akurasi menurun seiring bertambahnya jarak pembacaan. Jarak optimal untuk pembacaan suhu adalah sejauh 30 cm. ......The impact of the COVID outbreak that has affected the education sector has forced students and educators to study online. The application of online learning has an impact on students, especially college students. With the implementation of the New Normal, technology is needed to perform health monitoring on a large scale. This study aims to create a face recognition-based student presence device by adding a body temperature reading feature. This research was conducted in the FMIPA UI campus area. The programming language used to create the software is python version 3.6. In the face recognition process, the Histogram of Oriented Gradients (HOG) method is used to detect the location of the face and the Openface module is used to capture features of the face. For the face matching stage, Euclidean Distance is used to find the match value for each database image. From the results of testing on 30 students, obtained an accuracy of 93.3%. While testing the distance capability in face detection, it was found that the system can detect faces up to a distance of 120 cm in normal room lighting conditions. While testing the Thermal Camera AMG8833, it was found that the accuracy value decreased as the distance increased. The optimal distance for temperature readings is 30 cm.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Vera Mukty
Abstrak :
Tugas Akhir ini membahas pengembangan sistem pengenalan wajah yang menggunakan metode Voting. Pada sistem ini digunakan metode Eigenface untuk melakukan ekstraksi ciri wajah, dan metode Jarak Euclidean untuk mengukur tingkat kemiripan antar citra wajah. Berdasarkan hasil pengamatan dari penggunaan metode Eigenface dan Jarak Euclidean tersebut, belum tentu citra wajah yang memiliki Jarak Euclidean terkecil adalah milik subyek yang sama dengan citra wajah input. Pada tugas akhir ini dikembangkan metode Voting untuk mengolah n-top citra wajah hasil. Melalui metode Voting, setiap citra wajah pada n-top citra wajah hasil akan memberikan kontribusi nilai pada subyek, dan subyek yang memiliki nilai terbesar akan keluar sebagai hasil.
The focus of this study is the development of face recognition system using Voting method. This system use Eigenface method to exctract face feature, and Euclidean Distance method to meassure the similarity level between face images. According to the result of the implementation of Eigenface method and Euclidean Distance method, face image with the smallest Euclidean Distance to face image input is not always represent the same subject. In this study Voting method is developed to process n-top face image result. In Voting method, every face image on n-top face image result will give added value for subject, and the subject with the biggest value will becoming the result.
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2008
S-Pdf
UI - Skripsi Open  Universitas Indonesia Library
cover
Sepritahara
Abstrak :
Sistem pengenalan wajah manusia merupakan salah satu bidang yang cukup berkembang dewasa ini, dimana aplikasi dapat diterapkan dalam bidang keamanan (security system) seperti ijin akses masuk ruangan, pengawasan lokasi (surveillance), maupun pencarian identitas individu pada database kepolisian. Tujuan Penulisan laporan tugas akhir ini adalah untuk membangun sebuah perangkat lunak pengenalan citra wajah manusia menggunakan metode Hidden Markov Models (HMM) dengan input database Pain Ekspression Subset dan database Hasil Foto Sendiri dengan memanfaatkan aplikasi GUI. Hasil pengujian sistem menunjukkan bahwa sistem pengenalan wajah (face recognition) membandingkan percobaan pengenalan sesuai dengan codebook (32, 64,128, 256) dan iterasi (5, 10). Sistem pengenalan wajah manusia menggunakan metode Hidden Markov Models (HMM) mencapai tingkat akurasi pengenalan sebesar 84,28%, dengan database 70 gambar yang terdiri dari 10 individu dengan masing-masing individu memiliki 7 variasi ekspresi yang berbeda.
ABSTRACT
Human face recognition system is one area that is developing now, where applications can be applied in the field of security (security system) such as permit access into the room, monitoring locations (surveillance), or search for individual identity in the police database. Purpose of this final report is to build a software image of human face recognition using Hidden Markov Models method (HMM) with input Pain Ekspression Subset database and Image itself database applications of GUI. Test results show that the system of face recognition systems trial comparing the introduction according to the codebook (32, 64.128, 256) and iteration (5, 10). Human face recognition system using Hidden Markov Models (HMM) reached the level of recognition accuracy of 84,28%, with 70 database that consists of 10 individuals with each individual has 7 variations of expressions.
Depok: Fakultas Teknik Universitas Indonesia, 2012
S1373
UI - Skripsi Open  Universitas Indonesia Library
cover
Praseyawidi Indrawan
Abstrak :
Identitas diri seseorang dalam jejaring sosial menjadi hal penting terutama ketika ingin mengenali siapa sebenarnya orang tersebut. Pencarian identitas diri dapat dengan mudah dilakukan melalui pencarian dalam situs search engine ataupun situs jejaring sosial yang ada pada komputer atau laptop. Metode ini sepertinya bukan merupakan hal yang efektif dan praktis seiring berkembangnya perangkat mobile dalam masyarakat seperti smartphone dan tablet. Untuk itu, dirancang sebuah sistem pengenalan wajah pada perangkat mobile. Sistem ini dirancang dalam bentuk aplikasi yang dikembangkan pada perangkat mobile Android. Penggunaan Android Face Detector API akan bertindak sebagai pustaka dalam proses deteksi wajah pada perangkat mobile sebelum melakukan proses offloading ke layanan komputasi awan. Hasil implementasi berupa modul deteksi wajah pada perangkat mobile dan modul pengenalan wajah (offloading) yang memanfaatkan layanan komputasi awan dengan bantuan komunikasi Representational State Transfer (REST). Hasil pengujian sistem pada perangkat mobile menunjukkan bahwa total waktu pengenalan wajah sebesar 7,45 detik dengan waktu deteksi wajah (onloading) 0,45 detik dan waktu proses offloading 7 detik. ......The identity of a person in social networking becomes very important especially when we want to identify a person. Search for detailed-identity can be easily conducted through searching using the search engine sites or existing social networking website using computer or laptop. This method is not effective and practical when we consider the development of mobile device technology in the community such as smartphone and tablet. Therefore, designed a face recognition system on mobile devices. The system is designed in the form of an application developed on Android mobile devices. The use of Android Face Detector API will act as libraries in the process of face detection before performing the offloading stage. This paper describes the implementation of the facial detection module on mobile device and face recognition module (offloading) using cloud computing service with REST communication. The result of testing on mobile device indicates that total computation time for face recognition system reached 7,45 seconds with the onloading process 0,45 seconds and the offloading process 7 seconds.
Depok: Fakultas Teknik Universitas Indonesia, 2012
S42172
UI - Skripsi Open  Universitas Indonesia Library
cover
Slamet Budiyatno
Abstrak :
Sejak kehadiran jejaring sosial belakangan ini setiap orang dapat dengan mudah memperoleh informasi siapapun. Bahkan persaingan industri IT semakin marak dengan dikembangkannya aplikasi dan layanan yang terhubung dengan jejaring sosial. Oleh karena itu, muncul sebuah ide untuk mengembangkan sistem pengenalan wajah sebagai identitas penghubung jejaring sosial. Selain menggunakan wajah sebagai identitas utama dalam perancangan sistem, wajah juga digunakan sebagai marker untuk menampilkan informasi hasil pengenalan wajah berbasis Augmented Reality. Sistem utuh ini terdiri dari pengenalan wajah pada perangkat mobile Android, pengenalan wajah pada layanan komputasi awan dan tambahan informasi hasil pengenalan wajah berupa Augmented Reality. Modul pengenalan wajah ditanamkan pada layanan Cloud Computing Google App Engine berbasis Python dengan memanfaatkan Face.com API sebagai pengolahan citra wajah. Hasil informasi dari layanan tersebut dikembalikan dalam format JSON. Response JSON itu dimanfaatkan sebagai tambahan informasi yang akan ditampilkan dengan konsep Augmented Reality. Kehadiran Augmented Reality pada sistem ini bertujuan untuk memberikan interaksi yang ramah dengan pengguna. Berdasarkan hasil pengujian, Augmented Reality bekerja dengan cepat ketika menjadikan wajah sebagai marker untuk menampilkan informasi hasil pengenalan wajah, dengan respon rata-rata sebesar 1025.42 ms untuk mendapat informasi lengkap dan 697.7 ms untuk mendapat sedikit informasi dari orang yang dikenal. ......Recently, since the presence of social networking, anyone can easily receive information of anyone, anytime and anywhere. The competition for IT industry increased with the development of connected applications and services with social networking. Therefore, we proposed a face recognition system as a connector to social networking application. In addition to using face as a primary identity in the system design, face is also used as a marker to display information of the result of the face recognition-based on Augmented Reality. This complete system consists of face recognition on Android mobile devices. Face recognition on cloud computing services and additional information on the results of face recognition in the form of Augmented Reality. Face recognition module is embedded in the Cloud Computing using Google App Engine services based on Python, and also using Face.com API for facial image processing. The results of the service information is returned in JSON format. Given JSON response used as additional information to be displayed with the concept of Augmented Reality. The presence of Augmented Reality in this system aims to provide a friendly interaction with the user. Based on the results of test, Augmented Reality works quickly when used faces as a marker, with the average response time of 1025.42 ms to get complete information and 697.7 ms to get a little information from people who are known.
Depok: Fakultas Teknik Universitas Indonesia, 2012
S42173
UI - Skripsi Open  Universitas Indonesia Library
cover
Supeni
Abstrak :
Proses optimasi pada Probabilistic Neural Network (PNN) dapat dilakukan terhadap nilai smoothing parameter maupun struktur neuron. Setiap permasalahan memiliki nilai smoothing parameter optimal yang berbeda. Optimasi struktur neuron bertujuan untuk mereduksi banyak neuron yang digunakan sehingga dapat mempersingkat waktu komputasi. Skripsi ini membahas proses pencarian nilai smoothing parameter optimal menggunakan algoritma genetika dan struktur neuron optimal menggunakan algoritma ortogonal dalam sistem pengenal wajah. Terdapat dua jenis teknik optimasi yang akan dibahas, lalu membandingkan hasilnya dengan PNN struktur utuh dan backpropagation. Data wajah yang digunakan berupa foto infra merah dan cahaya tampak. ......Optimization of Probabilistic Neural Network (PNN) can be performed to the value of smoothing parameter and neuron structure. Every problem has different value of smoothing parameter. Optimization of neuron structure aims to reduce the number of neurons used, in order to shorten computation time. This thesis discusses the process of finding the optimal value of smoothing parameter using genetic algorithms and optimal neuron structure using orthogonal algorithms in face recognition system. Two types of optimization techniques which will be discussed, then the results are compared with full structure PNN and backpropagation. Face data used in the form of infrared and visible light images.
Depok: Fakultas Teknik Universitas Indonesia, 2011
S1579
UI - Skripsi Open  Universitas Indonesia Library
<<   1 2 3   >>