Ditemukan 2 dokumen yang sesuai dengan query
Fatinisa Rizki Nabillah
"Metode Magnetotellurik (MT) adalah metode elektromagnetik pasif dengan Tujuannya adalah untuk menentukan nilai resistivitas bawah permukaan. resistensi yang lebih rendah Permukaan digambarkan melalui proses inversi data MT. Dalam penelitian ini menggunakan data sintetik dan data pengukuran menggunakan . metode MT. Tahapan dalam penelitian ini adalah membuat program inversi menggunakan Algoritma capung untuk meminimalkan kesalahan antara data resistivitas semu dari
perhitungan algoritma dengan data pengukuran di lapangan, validasi menggunakan data sintetik, dan validasi data pengukuran di lapangan. Hasil penelitian Ini adalah analisis parameter lapisan bawah permukaan, dan akurasi perhitungan Algoritma Dragonfy dengan kesalahan maksimum kurang dari 5.
The Magnetotelluric (MT) method is a passive electromagnetic method with the aim of determining the value of the subsurface resistivity. lower resistance The surface is depicted through the MT data inversion process. In this study using synthetic data and measurement data using . MT method. The stage in this research is to create an inversion program using the dragonfly algorithm to minimize errors between the apparent resistivity data from algorithm calculation with measurement data in the field, validation using synthetic data, and validation of measurement data in the field. The results of this study are the analysis of the parameters of the subsurface layer, and the accuracy of the Dragonfy Algorithm calculation with a maximum error of less than 5."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Muhammad Zubair
"This book presents the concept of fractional dimensional space applied to the use of electromagnetic fields and waves. It provides demonstrates the advantages in studying the behavior of electromagnetic fields and waves in fractal media. The book presents novel fractional space generalization of the differential electromagnetic equations is provided as well as a new form of vector differential operators is formulated in fractional space. Using these modified vector differential operators, the classical Maxwell's electromagnetic equations are worked out. The Laplace's, Poisson's and Helmholtz's equations in fractional space are derived by using modified vector differential operators.;"
New York: [Springer, ], 2012
e20395559
eBooks Universitas Indonesia Library