Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 3 dokumen yang sesuai dengan query
cover
Naili Suri Intizhami
Abstrak :
Pemantauan banjir dapat dilakukan dengan menggunakan Unmanned Aerial Vehicle (UAV) atau lebih dikenal dengan drone. Hasil pemantauan drone yang berupa video atau gambar kemudian akan dianalisa untuk memperoleh informasi. Salah satu metode yang dapat digunakan untuk melakukan analisa data citra adalah segmentasi semantik. Penelitian segmentasi semantik pada data video tangkapan UAV masih jarang dilakukan karena kurangnya dataset yang tersedia secara publik. Berbagai metode untuk segmentasi semantik antara lain menggunakan metode machine learning seperti Conditional Random Field (CRF) dan deep learning seperti Convolutional Neural Network (CNN). Namun, metode yang digunakan untuk segmentasi semantik masih memberikan hasil yang kurang optimal. Hal ini yang menjadi dasar kenapa penelitian ini dilakukan. Pada penelitian ini akan dilakukan pengembangan metode ENet, salah satu CNN yang berfokus untuk segmentasi semantik. Data yang akan digunakan adalah video banjir yang diambil oleh UAV. Pengembangan yang akan dilakukan akan berfokus pada menerapkan tipe konvolusi berbeda pada metode yang digunakan. Selain keakuratan segmentasi, penelitian ini juga akan berfokus untuk mengembangkan metode ENet yang dapat melakukan segmentasi semantik secara cepat, sehingga dapat diimplementasikan pada video tangkapan UAV. Metode yang diusulkan pada penelitian ini berhasil mendapatkan hasil akurasi hingga 93% dengan jumlah parameter yang lebih sedikit daripada metode pembanding. ......Flood monitoring can be done using an Unmanned Aerial Vehicle (UAV) or better known as a drone. The results of drone monitoring in the form of videos or images will then be analyzed to obtain information. One method that can be used to analyze image data is semantic segmentation. Semantic segmentation research on UAV capture video data is still rarely conducted due to the lack of publicly available datasets. Various methods for semantic segmentation include using machine learning methods such as Conditional Random Field (CRF) and deep learning such as Convolutional Neural Network (CNN). However, the method used for semantic segmentation still gives less than optimal results. This is the basis for why this research was conducted. In this research, the ENet method will be developed, one of the CNNs that focuses on semantic segmentation. The data to be used is the flood video taken by the UAV. The development that will be carried out will focus on applying different types of convolution to the methods used. In addition to the accuracy of segmentation, this research will also focus on developing the ENet method that can do semantic segmentation quickly, so that it can be implemented on UAV capture videos. The method proposed in this study was successful in obtaining an accuracy of up to 95% with a smaller number of parameters than the comparison method.
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2019
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
M. Ary Heryanto
Abstrak :
Quadrotor adalah wahana yang memiliki empat buah rotor sebagai penggerak. Untuk dapat bergerak sempurna maka quadrotor harus dilengkapi dengan Sistem kendali yang mampu mangatur dan memberikan sinyal kendali berupa kecepatan motor keseluruh rotor.Disertasi ini membahas tentang kendali autonomous untuk quadrotor menggunakan Neural Network Direct Inverse Control NN-DIC . Tujuan dari penelitian ini adalah untuk menyelidiki kinerja Quadrotor menggunakan kontrol NN-DIC. Untuk mewujudkan penelitian ini, langkah pertama adalah untuk membangun sebuah platform Quadrotor. Karena ide dasar dari DIC adalah untuk menghilangkan efek dinamika plant dengan kendali inverse, maka langkah selanjutnya adalah membangun sebuah model NN-DIC menggunakan data penerbangan yang sebenarnya. Metode pelatihan backpropagation dipilih karena strukturnya sederhana namun mampu memberikan error yang kecil.Melalui beberapa simulasi, model kendali NN-DIC telah mampu menstabilkan quadrotor dengan performa yang sangat baik dalam mengikuti trajectory pada kondisi hover, perubahan altitude maupun manuver. Perfoma yang baik ini ditunjukan dengan nilai MSE yang kecil, yaitu 0.042 pada saat hover untuk kendali attitude, 0.340 pada saat perubahan altitude untuk kendali attitude-altitude dan terakhir nilai MSE sebesar 1.966 saat maneuver untuk kendali autonomous.
The quadrotor is an Unmanned Aerial Vehicle UAV which is included in the category of rotary wing with four rotors located at its four corners. In order to move perfectly the quadrotor must be equipped with a control system capable of controlling and providing control signals of motor speed throughout the rotors.This dissertation discusses about autonomous control for quadrotor using Neural Network Direct Inverse Control NN DIC . The purpose of this study was to investigate Quadrotor performance using NN DIC controls. To realize this research, the first step is build a Quadrotor platform. Since the basic idea of DIC is to eliminate the dynamics effect of the plant with inverse control, the next step is build an NN DIC model using actual flight data. Backpropagation training method is chosen because the structure is simple but has a small error result.Some simulations have been done, the NN DIC control model has been able to stabilize the quadrotor with excellent performance in following trajectory under hover conditions, altitude changes and maneuvers. The excellent performance is indicated from a small MSE score of 0.042 during hover on attitude control, 0.340 with altitude change on attitude altitude control and MSE of 1.966 when maneuvered on autonomous control.
Depok: Fakultas Teknik Universitas Indonesia , 2017
D2273
UI - Disertasi Membership  Universitas Indonesia Library
cover
Shima, Tal
Abstrak :
Unmanned aerial vehicles (UAVs) are increasingly used in military missions because they have the advantages of not placing human life at risk and of lowering operation costs via decreased vehicle weight. These benefits can be fully realized only if UAVs work cooperatively in groups with an efficient exchange of information. This book provides an authoritative reference on cooperative decision and control of UAVs and the means available to solve problems involving them.
Philadelphia: Society for Industrial and Applied Mathematics, 2009
e20450844
eBooks  Universitas Indonesia Library