Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 11 dokumen yang sesuai dengan query
cover
Iwan Slamet Triawan
Abstrak :
ABSTRAK
Smart grid adalah konsep jaringan modern yang diharapkan oleh dunia dapat menjadi solusi yang tepat menjawab tantangan sistem kelistrikan di masa yang akan datang. Kendati tidak ada model tunggal yang dapat menjawab berbagai kondisi, smart grid telah diadopsi dan diimplementasikan di berbagai negara sesuai dengan permasalahan dan tujuan yang disasar oleh masing-masing negara tersebut. Implementasi smart grid hampir menjadi keniscayaan, tak terkecuali Indonesia. Apakah Indonesia dengan kondisi kelistrikannya yang unik bisa menerapkan smart grid yang seutuhnya seperti yang diterapkan oleh negara-negara penggagasnya atau perlu konsep dan model yang khusus untuk aplikasi Indonesia? Telah dilakukan analisa terkait penerapan smart grid di beberapa negara berkembang di Asia sebagai pembanding dalam implementasi. Berdasarkan data dan kondisi saat ini, Indonesia memiliki peluang besar untuk migrasi ke smart grid, hanya saja tidak semua karakteristik dapat dipenuhi, yang utama yaitu demand response dan dynamic pricing karena dibatasi oleh regulasi. Roadmap untuk pemahaman konsep dan implementasi smart grid telah dibuat, yang menunjukkan gambaran tahapan kegiatan implementasi smart grid yang bisa diterapkan di Indonesia. Roadmap yang disusun belum mencakup seluruh aspek dari smart grid dan harus diperlakukan sebagai bagian dari proses yang akan terus berkembang. Tahapan implementasi yang paling baik adalah menerapkan pada pilot project dengan skala terbatas.
ABSTRACT
Smart grid is a concept of modern network which is expected by the world to be a perfect solution to meet the future challenges of the electrical system. Although there is no single model that can answer a variety of conditions, smart grid has been being adopted and implemented in various countries in accordance with their unique issues and objectives. Implementation of smart grid is almost a necessity, including Indonesia. Indonesia with its unique electricity conditions has its own challenges to determine the appropriate model and concept of implementing smart grid which is suitable for the local condition. Analysis has been done against the smart grid implementation among several developing countries in Asia for reference. Based on the current data and situation, Indonesia has a great opportunity for migration to a smart grid, only that not all characteristics can be satisfied which are demand response and dynamic pricing due to applicable regulation. Roadmap for understanding the concept and implementation of appropriate and suitable smart grid has been developed, which is reflecting the step by step activities of smart grid implementation that can be applied in Indonesia. The roadmap doesn’t cover all aspects of the smart grid and it should be treated as part of a process which is absolutely will continue to evolve. And the best way to realize it is to implement the smart grid on a pilot project at a limited scale.
Fakultas Teknik Universitas Indonesia, 2013
T35642
UI - Tesis Membership  Universitas Indonesia Library
cover
Budiyanto
Abstrak :
Sumber energi terbarukan merupakan sumber energi yang potensial untuk dikembangkan, seperti tenaga angin, matahari, dan air. Perkembangan teknologi elektronika daya seperti invertor memberikan solusi atas penggunaan energi terbarukan pada sistem jaringan listrik mikro (microgrid) arus bolak - balik, namun sistem ini sering mengalami persoalan pada frekuensi, tegangan, daya aktif dan daya reaktif saat dua buah atau lebih invertor bekerja bersamaan, sehingga perlu peralatan sinkronisasi dan pengendali yang rumit. Pengembangan sistem jaringan listrik miko arus searah (JLMAS) juga dikembangkan seiring dengan perkembangan peralatan rumah tangga yang dapat dioperasikan dengan sumber arus searah, hal ini juga merupakan solusi dari keterbatasan pada jaringan listrik mikro arus bolak - balik. Dalam sistem JLMAS penggabungan dua buah atau lebih sumber energi terbarukan dapat dengan mudah diparalel, dengan syarat tegangan dan polaritanya sama. Sehingga ini menjadikan peluang untuk mengembangkan sistem JLMAS. Pembangkit energi terbarukan seperti sel surya dan turbin angin sangat dipengaruhi oleh kondisi alam sehingga produksi listrik yang dihasilkan tidak stabil dan bahkan terhenti sama sekali, untuk itu perlu dilengkapi dengan baterai yang fungsinya selain sebagai penyimpan energi juga untuk menjaga agar pasokan daya listrik ke jaringan listrik mikro menjadi lebih kontinyu. Saat baterai mengalami penurunan dan tidak mampu dalam memberikan suplai energi maka perlu adanya baterai cadangan yang dapat memasok energi ke sistem jaringan. Agar baterai cadangan dapat bekerja maka perlu ada pengendali untuk mengatur kerja baterai tersebut. Beberapa penelitian tentang pengendali tegangan dari pembangkit energi terbarukan telah dilakukan, namun masih dalam satu sistem pembangkit. Penelitian ini bertujuan untuk mengendalikan sistem JLMAS dari dua atau lebih sumber energi terbarukan dan satu baterai cadangan yang mensuplai ke jaringan lisrtik mikro. Dalam penelitian ini didapatkan sistem pengendali JLMAS yang dapat mendeteksi besarnya tegangan baterai PV dan baterai cadangan pada tegangan 10,8 - 13,6 Vol, yang berfungsi untuk mengatur SOCmin dan SOC maks pada baterai. Tegangan yang digunakan pada sistem JLMAS adalah 254 Vas, tegangan ini dihasilkan dari pengembangan invertor menjadi konvertor penaik tegangan AS-AS dari 12Volt menjadi 254 Volt. Hasil analisa dan perencanaan JLMAS dengan kapasitas daya 1200 VA, dengan penempatan beterai secara terintegrasi besarnya kapasitas pembangkit sel surya pada masing - masing sebesar 9729,42 Wp, sedangkan besarnya kapasitas baterai lokal (baterai PV) sebesar 850 Ah dan baterai cadangan 5000 Ah dengan lama waktu penyimpanan energi 3 hari. Dalam sistem JLMAS beban yang digunakan adalah beban arus bolak - balik berbasis swiching (SMPS) sehingga tanpa harus mengunakan invertor.
The renewable energy source is a source of potential energy to be developed, such as wind, solar, and water energy. The development of power electronics technology such as inverter provides a solution for the use of renewable energy on an AC micro grid system (microgrid), but this system often has problems on frequency, voltage, active power and reactive power when two or more inverters work together, so synchronization and controlling complex equipment are needed. The developing of DC micro grid systems (JLMAS) is also done along with the development of household appliances that can be operated with direct current source. It is also a solution of the limitations on AC micro grid. In JLMAS system combining two or more sources of renewable energy can be easily paralleled, on conditions that the voltage and polarity are the same. So it creates the opportunity to develop a system JLMAS. The renewable energy such as solar cells and wind turbine are strongly influenced by natural conditions so that electricity production is not stable and even stopped altogether, for it needs to be equipped with a battery that has functions not only as an energy storage but also to ensure the supply of electrical power to the micro grid becomes more continuous. When the battery has decreased and is not able to provide energy supplies, it needs a backup battery that can supply energy to the network system. For backup battery in order to work properly it needs a voltage controller for controlling the battery operation. Some researches on controlling the voltage of renewable energy generation has been done, but still in a generating system. This research aims to control the JLMAS system from two or more sources of renewable energy and a battery backup supplying to the micro electric network. In this research, it is obtained that the control system of JLMAS that can detect the magnitude of voltage of PV battery and a spare battery at a voltage of 10,8 to 13.6 Volt, which works to regulate SOC min and max on the battery. The voltage used in the JLMAS system is 254Vdc, this voltage is resulted from the development of an inverter to become a boost converter from 12 Volt to 254 Volt. Results of analysis and planning JLMAS with 1200 VA power capacity, with placement of battery in integrating, the magnitude of solar cell generation capacity on each amounting to 9729,42 Wp, while the magnitude of the local battery capacity (battery PV) of 850Ah and a 5000 Ah of battery backup with the duration of energy storage time is 4 days. In JLMAS system is used alternating current load based on switching (SMPS) without using inverter.
Depok: Fakultas Teknik Universitas Indonesia, 2014
D1489
UI - Disertasi Membership  Universitas Indonesia Library
cover
Dyah Sekar Asih
Abstrak :
Rekonfigurasi jaringan distribusi dan instalasi distributed generation DG dengan tujuan mengurangi rugi-rugi daya aktif saluran dan memperbaiki profil tegangan sistem IEEE 33 bus telah disimulasikan pada skripsi ini. Rekonfigurasi jaringan diselesaikan dengan algoritma Binary Particle Swarm Optimization pada MATLAB dan penentuan lokasi dan kapasitas DG diselesaikan dengan analisis aliran daya pada ETAP. Rugi-rugi daya aktif setelah rekonfigurasi berkurang sebesar 33,357 dari sebelumnya 208,4 kW menjadi 138,9 kW dan tegangan minimum sistem meningkat dari 0,9107 pu menjadi 0,9423 pu. Penginstalasian DG pada lokasi yang tepat dan besar kapasitas yang tepat dapat mengurangi rugi-rugi daya aktif saluran dan memperbaiki tegangan sistem. Berdasarkan hasil simulasi, lokasi terbaik pemasangan satu DG adalah pada bus 30 dengan kapasitas DG sebesar 1250 kW. Lokasi terbaik pemasangan dua DG adalah pada bus 30 dengan kapasitas DG sebesar 1250 kW dan pada bus 8 dengan kapasitas DG sebesar 900 kW. Lokasi terbaik pemasangan tiga DG adalah pada bus 30 dengan kapasitas DG sebesar 1250 kW, bus 8 dengan kapasitas DG sebesar 900 kW, dan bus 24 dengan kapasitas sebesar 950 kW. Setelah sistem direkonfigurasi dan diinstalasi tiga DG diperoleh rugi-rugi daya aktif terendah yaitu 20,7 kW dan tegangan minimum terbaik yaitu 0,9820 pu. ......Distribution network reconfiguration and distributed generation DG installation for reducing power losses and improving voltage profile on IEEE 33 bus system have been simulated in this thesis. Network reconfiguration simulated using Binary Particle Swarm Optimization algoritm in MATLAB and placement and sizing DG simulated using power flow analysis in ETAP. After reconfiguration, power losses decreased by 33,357 from 208,4 kW to 138,9 kW and minimum system voltage increased from 0,9107 pu to 0,9423 pu. DG installation at the right place and right capacity can reduce power losses and improve system voltage. Based on simulation, the best location for installing one DG is at bus 30 with capacity of 1250 kW. The best location for installing two DG is at bus 30 with capacity of 1250 kW and at bus 8 with capacity of 900 kW. The best location for installing three DG is at bus 30 with capacity of 1250 kW, at bus 8 with capacity of 900 kW, and at bus 24 with capacity of 950 kW. After configuring the system and installing DG with number of DG is three at the system, the lowest power losses obtained is 20.7 kW and the best minimum voltage obtained is 0.9820 pu.
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Chowdhury, S.
Stevenage Herts: The Institution of Engineering and Technology, 2009
621.31 CHO m
Buku Teks  Universitas Indonesia Library
cover
Han, Phoumin
Jakarta: Economic Research Institute For ASEAN And East Asia (ERIA), 2018
330.959 DIS
Buku Teks  Universitas Indonesia Library
cover
Chowdhury, Sunetra
Abstrak :
A companion to Embedded Generation by Nick Jenkins and his colleagues, this book is a timely publication for an evolving industry. Renewable energy, ancillary services and deregulation of the power industry are changing electricity delivery networks. Microgrids, smart grids and active distribution networks require a sound understanding of the basic concepts, generation technologies, impacts, operation, control and management, economic viability and market participation involved in grid integration. Practicing engineers in utilities and industry, researchers and students will appreciate this lucid description of the technologies that will enable future electricity systems.
London: Institute of South East Asia Studies, 2009
e20452756
eBooks  Universitas Indonesia Library
cover
R. Ari Dharmawan Putra
Abstrak :
Dengan semakin menipisnya sumber energi fosil maka diperlukan pencarian sumber-sumber energi alternatif sebagai untuk menjaga keberlangsungan pasokan energi. Sumber-sumber energi alternatif ini sebagian besar merupakan sumber energi terbarukan. Potensi sumber energi terbarukan yang telah banyak diterapkan di seluruh dunia adalah potensi sumber energi sinar matahari dikarenakan potensi sumber energi ini sangat berlimpah, tak terbatas dan tersedia hampir di seluruh muka bumi. Kekurangan dari Pembangkitan Listrik Tenaga Surya PV terpusat adalah dibutuhkan lahan yang sangat luas untuk mendapatkan kapasitas daya yang besar. Untuk itu dilakukan terobosan dengan melakukan Pembangkitan Listrik Tenaga Surya PV dengan sistem pembangkitan terdistribusi dengan memanfaatkan atap-atap rumah yang terhubung dengan jaringan. Sistem PV yang terhubung dengan jaringan listrik PLN menggunakan skema net-metering. Namun investasi tersebut secara ekonomi masih sangat rentan. Oleh karena itu diperlukan insentif agar investasi tersebut menarik dan sangat layak secara ekonomi.
The depletion of fossil energy resources it is necessary to search for alternative energy sources as to maintain the continuity of energy supply. Alternative energy sources is largely a renewable energy source. Potential sources of renewable energy that has been widely applied throughout the world is a potential source of energy in sunlight because of the potential of these energy sources are abundant, unlimited and available almost in all the earth. Disadvantages of Solar PV Power Generation is a centralized vast tracts of land needed to obtain a large power capacity. For that breakthrough by Solar PV Power Generation with distributed generation systems by utilizing the roof top of homes connected to the grid. The PV systems that are connected to the grid using net metering scheme. But the investment is still economically fragile. Therefore, incentives are needed to make the investment attractive and economically feasible.
Depok: Fakultas Teknik Universitas Indonesia, 2017
T48884
UI - Tesis Membership  Universitas Indonesia Library
cover
Guru Pamosik Wibowo
Abstrak :
Pembangkitan tersebar Distributed Generation seperti PLTS dan PLTB menggunakan peralatan elektronika daya yaitu invertor agar dapat terhubung dengan sistem jala-jala grid. Invertor merupakan peralatan elektronika daya berbasis sistem pensaklaran, sehingga penggunaannya dapat menyebabkan permasalahan kualitas daya pada sistem tenaga listrik yakni harmonisa. Harmonisa yang dihasilkan dari invertor bergantung dari jumlah pulsa yang digunakan. Pada Penelitian ini, jenis dari invertor berdasarkan jumlah pulsanya akan divariasikan untuk mengindentifikasi fenomena harmonisa pada sistem tenaga listrik yang terjadi dari tiap-tiap jenis invertor tersebut. Besar dari THD dan IHD akan didapatkan dari sumlasi yang kemudian akan dibandingkan dengan standar harmonisa IEEE 519-1992. Untuk mereduksi distorsi harmonisa yang terjadi pada sistem, selain memvariasikan jenis invertor berdasarkan jumlah pulsanya akan dirancang dua jenis filter yaitu single-tuned passive filter dan highpass damped filter sesuai dengan orde yang akan direduksi. Filter tersebut akan dipadukan dengan masing-masing invertor 6,12,24, dan 48 pulsa, jika distorsi harmonisa masih tidak sesuai dengan standar. Berdasarkan simulasi harmonisa yang telah dilakukan dari tiap tiap invertor, diketahui penggunaan invertor 6,12, dan 24 pulsa membutuhkan filter pasif sedangkan invertor 48 pulsa tidak membutuhkan filter pasif.
Distributed generation such as photovoltaic and wind turbine use inverter to connect them to the grid. An Inverter is a power electronic equipment that is based on a switching system, so the usage of inverter causes harmonic. The harmonic distortion produced by an inverter depends on the number of the invertor pulses. In this research, the invertor are going to be varied based on the pulse number to identify the harmonic phenomenon from each of the numbers of the pulses. The percentage of THD and IHD will be obtained and compared to the harmonic standard, IEEE 519 1992. To reduce the harmonic that still occurs on the system after the variation of the inverter types, two types of filters, single tuned passive filter, and highpass damped filter will be designed. The designed filter will be combined with each type of the inverter. Based on the simulation that has been done, it is known that the usage of 6,12, and 24 pulse inverter require a harmonic filter while 48 pulse inverter does not require a harmonic filter.
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Irana Krisiana
Abstrak :
Kebutuhan energi listrik untuk kehidupan sehari-hari akan terus meningkat seiring dengan pertumbuhan penduduk. Kebutuhan energi listrik tersebut dipenuhi oleh pembangkit-pembangkit listrik berkapasitas besar yang umumnya terletak jauh dari titik beban. Dengan melewati sistem transmisi dan sistem distribusi, tak jarang akan menimbulkan banyak gangguan baik dari faktor internal maupun eksternal. Hal ini akan menurunkan tingkat keandalan sistem tenaga listrik dalam menyediakan kebutuhan listrik kepada konsumen. Demi meningkatkan keandalan sistem distribusi, dipasanglah pembangkit terdistribusi atau Distributed Generation sebagai alternatif pembangkit yang berkapasitas kecil dan dapat dipasang di jaringan distribusi. Menghitung keandalan sistem distribusi ini dilakukan menggunakan metode simulasi menggunakan ETAP dengan hasil peningkatan keandalan yang paling bagus sebesar 78,23 pada SAIFI dan 57,44 pada SAIDI ketika DG dipasang di setiap feeder yang berbeda di dalam satu gardu distribusi yang sama. ......The need for electrical energy for everyday life will continue to increase along with population growth. The demand for electrical energy is met by large capacity power plants that are generally located far from the load point. By passing the transmission system and distribution system, sometimes there will be many disturbances both from internal and external factors. To reduce disturbance in order to improve the reliability of the distribution system, a Distributed Generation is installed as an alternative to a small capacity plant and can be installed in a distribution network. Calculating the reliability of the distribution system was performed using a simulation method using ETAP with the best result of reliability improvement of 78.23 at SAIFI and 57.44 on SAIDI when DG installed in each different feeder in the same distribution substation.
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Wood, Janet
Abstrak :
In future the UK's energy supplies, for both heat and power, will come from much more diverse sources. In many cases this will mean local energy projects serving a local community or even a single house. What technologies are available? Where and at what scale can they be used? How can they work effectively with our existing energy networks? This book explores these power and heat sources, explains the characteristics of each and examines how they can be used.
London: Institution of Engineering and Technology, 2008
e20451585
eBooks  Universitas Indonesia Library
<<   1 2   >>