Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 4 dokumen yang sesuai dengan query
cover
Siti Leah Latifa
Abstrak :
Penyakit Bovine tuberculosis merupakan penyakit yang dapat menyerang manusia melalui hewan ternak. Proses penularan dapat terjadi melalui udara dan produk hewan ternak yang tidak diolah dengan benar. Saat manusia terjangkit BTB, dapat terjadi proses infeksi sekunder dan relapse. Fenomena ini dapat dimodelkan secara matematis dengan model epidemi SEIR yang merepresentasikan 7 kelompok individu yaitu manusia rentan Sh, manusia terekspos Eh, manusia terinfeksi Ih, manusia sembuh Rh, hewan ternak rentan Sc, hewan ternak terekspos Ec dan hewan ternak terinfeksi Ic. Dari kajian analitik dan numerik dapat ditentukan syarat eksistensi dan kestabilan bilangan reproduksi dasar untuk manusia R01 dan hewan ternak R02. Selain itu didapat juga syarat eksistensi dan kestabilan titik endemis EE dan titik bebas penyakit DFE. ...... Bovine tuberculosis is a disease that can attack humans through cattle. The process of transmission can occur through the air and cattle products that are not treated properly. When humans are infected with BTB, reinfection and relapse may occur. This phenomenon can be mathematically modeled with the SEIR epidemic model that represents the 7 individual groups of susceptible human beings Sh, exposed human Eh, infected humans Ih, recovery human Rh, susceptible cattle Sc, exposed cattle Ec and infected cattle Ic . From analytic and numerical studies we can determine the terms of existence and stability of basic reproduction numbers for humans R01 and farm animals R02. In addition, there is also a requirement of the existence and stability of endemic point EE and disease free point DFE.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Nugraha Putra Yuri
Abstrak :
Terlepas vaksinasi campak telah dilakukan secara global saat ini, infeksi penyakit campak masih menjadi endemik pada sebagian besar negara di dunia. Infeksi tersebut tidak hanya terjadi pada negara-negara dengan cakupan vaksinasi yang rendah. Pada negara dengan cakupan vaksinasi yang tinggi seperti Amerika Serikat pun, saat ini wabah campak tetap terjadi pada negara tersebut. Hal ini dikarenakan penyakit campak merupakan penyakit yang sangat menular, dimana tingkat keterjangkitan penyakit pada individu yang tidak memiliki kekebalan adalah sebesar 90%. Pengendalian penyebaran penyakit campak dilakukan dengan pemberian vaksin campak sebanyak dua dosis. Selain melindungi individu yang divaksin campak, pemberian vaksin campak juga dapat mencegah transmisi penyakit campak ketika cakupan vaksinasi tinggi atau sebagian individu pada populasi kebal terhadap penyakit (efek herd immunity). Infektivitas penyakit campak sangat tinggi, sehingga penyakit campak memiliki ambang batas perlidungan kelompok yang tertinggi dari semua penyakit yang dapat dicegah dengan pemberian vaksin. Oleh karena itu, diperlukan kekebalan populasi yang tinggi untuk mengganggu transmisi virus. Pada penelitian ini, dikontruksi model matematika SVEIR pengendalian penyebaran penyakit campak dengan intervensi vaksinasi serta mempertimbangkan faktor herd immunity. Selanjutnya dilakukan analisis pada titik-titik keseimbangan yang diperoleh dari model. Selain itu dilakukan juga analisis sensitivitas basic reproduction number (R0) terhadap parameter vaksinasi pada model. Diperoleh bahwa, dalam upaya pengendalian penyakit campak, pemberian vaksin dosis pertama sangat penting dalam menurunkan level endemik. Serta dilakukan juga simulasi autonomous untuk melihat bagaimana pengaruh intervensi vaksinasi terhadap penyebaran penyakit campak dengan beberapa kasus variansi nilai parameter.
Despite measles vaccination has already been done globally, measles remains endemic in many parts of the world. The infection does not only occur in countries with low vaccinaction coverage. But also in countries with high vaccination coverage such as United States, the measles outbreak is still occurs in those countries. This is because measles is a highly infectious disease in which the infection rate of individuals without immunity  is 90%. Measles transmission control is done by giving two-doses measles vaccine. Besides protecting the individuals who get the vaccination, measles vaccination could also prevent the transmission of measles when the vaccination rate is high or many individuals are immune to the disease (herd immunity effect). The infectivity of measles is very high, so that the herd protection threshold for measles is the highest of all vaccine-preventable diseases. Therefore, a high level population immunity is required to interrupt transmission of measles due to its high infectivity. In this research, a mathematical model SVEIR was constructed for controlling measles with vaccination intervention along with considering the herd immunity effect. Afterwards, we analyze the equilibrium points from the model. Moreover, we analyze the sensitivity of basic reproduction number (R0) towards the vaccination parameter of the model. We found that, by giving one-dose measles vaccine is very influential to reduce the endemic level. Finally, we also do the autonomous simulation to see the effects of the vaccine intervention towards measles infection with some variation in parameter values.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Triantoro Setyawan Prayogo
Abstrak :
Virus West Nile (WNV) adalah virus yang dapat menimbulkan penyakit demam West Nile dan ditularkan melalui nyamuk di daerah beriklim sedang dan tropis. Virus West Nile, yang pertama kali diidentifikasi di sungai Nil, bagian barat Uganda pada tahun 1937, saat ini telah menyebar secara global, dengan kasus pertama di dunia barat diidentifikasi di New York City pada tahun 1999, dan di Indonesia pada tahun 2014. Penelitian ini bertujuan untuk mengkonstruksi model matematika penyebaran virus West Nile yang melibatkan populasi manusia, nyamuk serta burung berdasarkan model epidemi SIR (Susceptible, Infected, Recovered). Model matematika yang dibentuk adalah model matematika dengan sistem persamaan diferensial biasa non-linier berdimensi delapan. Metode penelitian yang digunakan pada skripsi ini adalah studi literatur, melakukan kajian analitik terhadap model yang dikonstruksi serta melakukan kajian numerik, yang terdiri dari analisis sensitivitas dan simulasi autonomous, untuk menggambarkan hasil analitik yang diperoleh dengan menggunakan software Maple. Kajian analitik dilakukan dengan mencari dan menganalisis titik keseimbangan bebas penyakit & titik keseimbangan endemik serta menentukan basic reproduction number (R0) dari model yang telah dikonstruksi dengan menggunakan next generation matrix. Didapatkan bahwa model memiliki dua titik keseimbangan, yaitu satu titik keseimbangan bebas penyakit (DFE) yang stabil asimptotik lokal ketika R0<1 dan satu titik keseimbangan endemik (EE) yang stabil asimptotik ketika R0>1, serta munculnya bifurkasi maju pada saat R0=1. Dari analisis sensitivitas menggunakan parameter yang digunakan pada skripsi ini, didapatkan bahwa parameter infeksi nyamuk ke manusia berpengaruh secara linier pada nilai R0, sedangkan hasil simulasi autonomous menunjukkan bahwa dalam jangka pendek jika nilai parameter infeksi semakin besar, maka jumlah populasi manusia, nyamuk, dan burung terinfeksi juga semakin besar. Tetapi hal ini tidak terjadi untuk jangka panjang, karena didapatkan bahwa baik nilai parameter infeksi besar maupun kecil, tidak memberikan pengaruh yang signifikan terhadap jumlah populasi yang terinfeksi. ......West Nile virus (WNV) is a virus that can cause West Nile fever and is transmitted by mosquitoes in temperate and tropical climates. The West Nile virus, which was first identified in the Nile river, western Uganda in 1937, has now spread globally, with the first case in the western world identified in New York City in 1999, and in Indonesia in 2014. This study aims to construct a mathematical model of the spread of the West Nile virus involving human, mosquito and bird populations based on the SIR (Susceptible, Infected, Recovered) epidemic model. The mathematical model formed is a mathematical model with a system of eight-dimensional non-linear ordinary differential equations. The research method used in this thesis is literature study, conducting an analytical study of the constructed model and conducting a numerical study, which consists of sensitivity analysis and autonomous simulation, to describe the analytical results obtained, using Maple software. The analytical study is carried out by finding and analyzing disease-free equilibrium points (DFE) and endemic equilibrium points (EE) as well as determining the basic reproduction number (R0) of the model constructed using the next generation matrix. It was found that the model has two equilibrium points, namely a disease-free equilibrium point which is locally asymptotically stable when R0<1 and an endemic equilibrium point which is asymptotically stable when R0>1, and the emergence of forward bifurcation at R0=1. From the sensitivity analysis, it was found that the parameter of mosquito infection to humans has a linear effect on the R0 value, while the results of the autonomous simulation show that in the short term, if the value of the infection parameter is greater, the number of infected humans, mosquitoes, and birds will also increase. However, this did not happen in the long term, because it was found that both large and small infection parameter values did not have a significant effect on the number of infected populations.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Audi Rivai
Abstrak :
ABSTRAK
Model deterministik penyebaran penyakit virus Zika dan Microcephaly pada skripsi inimelibatkan interaksi antara populasi manusia yang terbagi jadi dua yaitu anak-anak dandewasa lalu terdapat populasi nyamuk. Ada dua titik kesetimbangan yang diperolehpada model, yaitu titik kesetimbangan bebas penyakit pada kedua populasi dan titikkeseimbangan endemik. Eksistensi titik kesetimbangan bebas penyakit dibuktikandengan pendekatan analitik sementara eksistensi titik kesetimbangan endemik secaranumerik. Basic reproduction number R0 sebagai ambang batas endemik diberikansecara analitik dengan pendekatan next-generation matrix. Dari analisis sensitivitas R0dan simulasi numerik, ditemukan bahwa semakin kecil laju maka penyebaran penyakitzika dan microcephaly berkurang.
ABSTRACT
Deterministic model of the spread of Zika virus and Microcephaly disease in this thesisinvolves the interaction between the human population divided into two, namely childrenand adult. And there is a mosquito population. There are two equilibrium pointsobtained at model, that is the point of disease free equilibrium in both populations andthe equilibrium point endemic. The existence of the disease free equilibrium pointswith the analytic approach meanwhile the existence of equilibrium points is endemic tonumerical. Basic reproduction number R0 as an endemic threshold is given analyticallywith a next generation approach matrix. From the sensitivity analysis R0 and numericalsimulation, found that the smaller the rate then the spread of zika and microcephalydisease is reduced.
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library