Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 5 dokumen yang sesuai dengan query
cover
Bagaskara Ghanyvian Istiqlal
Abstrak :
Kualitas tidur yang baik sangatlah penting untuk berbagai aspek kehidupan seperti kesehatan fisik, kesehatan mental, keselamatan, konsentrasi, performa, penyembuhan, dan lain-lain. Kualitas tidur tidak hanya mencakup aspek fisiologis, tetapi juga memperhatikan aspek mental seperti: kondisi setelah tidur, kepuasan dengan tidur, dan pengaruh pada kehidupan sehari-hari. Penelitian ini mengusulkan penggabungan data objektif yang berasal dari Fitbit dan kuesioner subjektif untuk mengklasifikasi kualitas tidur menggunakan K-Nearest Neighbor. Klasifikasi ini bertujuan untuk mempelajari fitur-fitur yang paling pengaruh dalam kualitas tidur. Data objektif yang berisikan data fisiologis dan aspek tidur terukur oleh Fitbit, serta data subjektif mengenai aspek mental, keduanya dijadikan fitur deskriptif dalam model. Analisa fitur yang paling berpengaruh dilakukan dari dua sudut pandang model, yaitu fitur target kualitas tidur subjektif dan fitur target kualitas objektif. Kedua model dilatih dengan serangkaian data preprocessing yang termasuk didalamnya terdapat seleksi fitur dan ekstraksi fitur. Seleksi fitur berbasis ANOVA F Test akan dibandingkan dengan ekstraksi fitur Principal Component Analysis (PCA) dan Neighborhood Component Analysis(NCA). Seleksi fitur ANOVA F-Test lebih baik dari PCA dan NCA dengan peningkatan skor sebesar 0,06-0,08 pada model objektif, dan 0,01-0,06 pada model subjektif. Skor terbaik terbaik dari model subjektif yaitu 0,52 dengan parameter jumlah fitur = 3 dan k-neighbors = 27. Skor terbaik terbaik dari model objektif yaitu 0,72 dengan parameter jumlah fitur = 7 dan k-neighbors = 4. Pada akhirnya, ditemukan 3 Fitur yang paling berpengaruh dalam klasifikasi subjektf, dan 7 fitur yang paling berpengaruh dalam klasifikasi objektif.
Good quality sleep is very important for various aspects of life such as physical health, mental health, safety, concentration, performance, healing, and others. Sleep quality does not only include physiological aspects, but also pay attention to mental aspects such as condition after sleep, satisfaction with sleep, and influence on daily life. This study proposes combining objective data from Fitbit and subjective questionnaires to classify sleep quality using K-Nearest Neighbor. This classification aims to study the features that have the most influence in sleep quality. Objective data containing physiological data and sleep aspects measured by Fitbit, as well as subjective data on mental aspects, are both used as descriptive features in the model. The analysis of the most influential features is carried out from two viewpoints of the model, namely the subjective sleep quality target feature and the objective quality target feature. Both models are trained with a series of preprocessing data which includes feature selection and feature extraction. ANOVA F Test based on feature selection will be compared with feature extraction of Principal Component Analysis (PCA) and Neighborhood Component Analysis (NCA). ANOVA F-Test feature selection is better than PCA and NCA with an increase in scores of 0.06-0.08 in the objective model, and 0.01-0.06 in the subjective model. The best score of the subjective model is 0.52 with the parameter number of features = 3 and k-neighbors = 27. The best score of the objective model is 0.72 with the parameter number of features = 7 and k-neighbors = 4. In the end, it was found 3 the most influential features in the subjective classification, and 7 the most influential features in the objective classification.
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nabila Dita Putri
Abstrak :
Saat ini, dataset yang tersedia untuk melakukan analisis emosi di Indonesia masih terbatas, baik dari segi jumlah data, cakupan emosi, serta sumbernya. Pada penelitian ini, peneliti membangun dataset besar untuk tugas analisis emosi pada data teks berbahasa Indonesia, di mana dataset ini dikumpulkan dari berbagai domain dan sumber. Dataset ini mengandung 33 ribu teks, yang terdiri dari tweet yang dikumpulkan dari Twitter, serta komentar unggahan yang dikumpulkan dari Instagram dan Youtube. Domain yang dicakup pada dataset ini adalah domain olahraga, hiburan, dan life chapter. Dataset ini dianotasi oleh 36 annotator dengan label emosi fine-grained secara multi-label, di mana label emosi yang digunakan ini merupakan hasil dari taksonomi emosi baru yang diusulkan oleh peneliti. Pada penelitian ini, peneliti mengusulkan taksonomi emosi baru yang terdiri dari 44 fine-grained emotion, yang dikelompokkan ke dalam 6 basic emotion. Selain itu, peneliti juga membangun baseline model untuk melakukan analisis emosi. Didapatkan dua baseline model, yaitu hasil fine-tuning IndoBERT dengan f1-score micro tertinggi sebesar 0.3786, dan model hierarchical logistic regression dengan exact match ratio tertinggi sebesar 0.2904. Kedua baseline model tersebut juga dievaluasi di lintas domain untuk dilihat seberapa general dan robust model yang telah dibangun. ......Currently, no research in Indonesia utilises fine-grained emotion for emotion analysis. In addition, the available datasets for analysing emotions still need to be improved in terms of the amount of data, the range of emotions, and their sources. In this study, researchers built a large dataset for analysing emotion. This dataset contains 33k texts, consisting of tweets collected from Twitter and comments collected from Instagram and Youtube posts. The domains covered in this dataset are sports, entertainment, and life chapter. Thirty-six annotators annotated this dataset with fine-grained emotion labels and a multi-label scheme, where the emotion labels resulted from a new emotion taxonomy proposed by the researcher. In this study, the researchers propose a new emotion taxonomy consisting of 44 fine-grained emotions which are grouped into six basic emotions. Two baseline models were obtained, the first one is the fine-tuned IndoBERT model, which achieved the highest f1-score micro of 0.3786, and the second one is hierarchical logistic regression model, which achieved the highest exact match ratio of 0.2904. Both baseline models were also evaluated to determine their cross-domain applicability. The dataset and baseline models that are produced in this study are expected to be valuable resources for future research purposes.
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Kaysa Syifa Wijdan Amin
Abstrak :
Saat ini, dataset yang tersedia untuk melakukan analisis emosi di Indonesia masih terbatas, baik dari segi jumlah data, cakupan emosi, serta sumbernya. Pada penelitian ini, peneliti membangun dataset besar untuk tugas analisis emosi pada data teks berbahasa Indonesia, di mana dataset ini dikumpulkan dari berbagai domain dan sumber. Dataset ini mengandung 33 ribu teks, yang terdiri dari tweet yang dikumpulkan dari Twitter, serta komentar unggahan yang dikumpulkan dari Instagram dan Youtube. Domain yang dicakup pada dataset ini adalah domain olahraga, hiburan, dan life chapter. Dataset ini dianotasi oleh 36 annotator dengan label emosi fine-grained secara multi-label, di mana label emosi yang digunakan ini merupakan hasil dari taksonomi emosi baru yang diusulkan oleh peneliti. Pada penelitian ini, peneliti mengusulkan taksonomi emosi baru yang terdiri dari 44 fine-grained emotion, yang dikelompokkan ke dalam 6 basic emotion. Selain itu, peneliti juga membangun baseline model untuk melakukan analisis emosi. Didapatkan dua baseline model, yaitu hasil fine-tuning IndoBERT dengan f1-score micro tertinggi sebesar 0.3786, dan model hierarchical logistic regression dengan exact match ratio tertinggi sebesar 0.2904. Kedua baseline model tersebut juga dievaluasi di lintas domain untuk dilihat seberapa general dan robust model yang telah dibangun. ......Currently, no research in Indonesia utilises fine-grained emotion for emotion analysis. In addition, the available datasets for analysing emotions still need to be improved in terms of the amount of data, the range of emotions, and their sources. In this study, researchers built a large dataset for analysing emotion. This dataset contains 33k texts, consisting of tweets collected from Twitter and comments collected from Instagram and Youtube posts. The domains covered in this dataset are sports, entertainment, and life chapter. Thirty-six annotators annotated this dataset with fine-grained emotion labels and a multi-label scheme, where the emotion labels resulted from a new emotion taxonomy proposed by the researcher. In this study, the researchers propose a new emotion taxonomy consisting of 44 fine-grained emotions which are grouped into six basic emotions. Two baseline models were obtained, the first one is the fine-tuned IndoBERT model, which achieved the highest f1-score micro of 0.3786, and the second one is hierarchical logistic regression model, which achieved the highest exact match ratio of 0.2904. Both baseline models were also evaluated to determine their cross-domain applicability. The dataset and baseline models that are produced in this study are expected to be valuable resources for future research purposes.
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Gilang Catur Yudishtira
Abstrak :
Saat ini, dataset yang tersedia untuk melakukan analisis emosi di Indonesia masih terbatas, baik dari segi jumlah data, cakupan emosi, serta sumbernya. Pada penelitian ini, peneliti membangun dataset besar untuk tugas analisis emosi pada data teks berbahasa Indonesia, di mana dataset ini dikumpulkan dari berbagai domain dan sumber. Dataset ini mengandung 33 ribu teks, yang terdiri dari tweet yang dikumpulkan dari Twitter, serta komentar unggahan yang dikumpulkan dari Instagram dan Youtube. Domain yang dicakup pada dataset ini adalah domain olahraga, hiburan, dan life chapter. Dataset ini dianotasi oleh 36 annotator dengan label emosi fine-grained secara multi-label, di mana label emosi yang digunakan ini merupakan hasil dari taksonomi emosi baru yang diusulkan oleh peneliti. Pada penelitian ini, peneliti mengusulkan taksonomi emosi baru yang terdiri dari 44 fine-grained emotion, yang dikelompokkan ke dalam 6 basic emotion. Selain itu, peneliti juga membangun baseline model untuk melakukan analisis emosi. Didapatkan dua baseline model, yaitu hasil fine-tuning IndoBERT dengan f1-score micro tertinggi sebesar 0.3786, dan model hierarchical logistic regression dengan exact match ratio tertinggi sebesar 0.2904. Kedua baseline model tersebut juga dievaluasi di lintas domain untuk dilihat seberapa general dan robust model yang telah dibangun. ......Currently, no research in Indonesia utilises fine-grained emotion for emotion analysis. In addition, the available datasets for analysing emotions still need to be improved in terms of the amount of data, the range of emotions, and their sources. In this study, researchers built a large dataset for analysing emotion. This dataset contains 33k texts, consisting of tweets collected from Twitter and comments collected from Instagram and Youtube posts. The domains covered in this dataset are sports, entertainment, and life chapter. Thirty-six annotators annotated this dataset with fine-grained emotion labels and a multi-label scheme, where the emotion labels resulted from a new emotion taxonomy proposed by the researcher. In this study, the researchers propose a new emotion taxonomy consisting of 44 fine-grained emotions which are grouped into six basic emotions. Two baseline models were obtained, the first one is the fine-tuned IndoBERT model, which achieved the highest f1-score micro of 0.3786, and the second one is hierarchical logistic regression model, which achieved the highest exact match ratio of 0.2904. Both baseline models were also evaluated to determine their cross-domain applicability. The dataset and baseline models that are produced in this study are expected to be valuable resources for future research purposes.
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hendrico Kristiawan
Abstrak :
Pertanyaan konsultasi pada sebuah forum daring perlu dijawab oleh dokter spesialis yang tepat agar jawaban yang diberikan akurat dan bermanfaat bagi pengguna yang bertanya. Terkait hal tersebut, penelitian ini membahas tentang pengembangan model yang dapat secara otomatis mengarahkan sebuah pertanyaan konsultasi kesehatan ke dokter dengan spesialisasi yang sesuai. Lebih jauh lagi, model yang dibangun merupakan model klasifikasi multi-label karena sebuah pertanyaan dapat terasosiasi dengan lebih dari satu spesialisasi. Penelitian ini dimulai dengan mengevaluasi keefektifan metode pemetaan berbasis aturan dalam memprediksi data yang dianotasi oleh pakar, dan diperoleh hasil yang menunjukkan tingkat keberhasilan yang cukup. Selanjutnya, dikembangkan sebuah model machine learning yang melakukan klasifikasi domain spesialis dokter. Pelatihan model dilakukan dengan berbagai metode, termasuk supervised, unsupervised, serta semi-supervised learning. Model terbaik ditemukan melalui metode domain adaptive pre-training dengan IndoBERT-large sebagai model acuan dan melibatkan unsupervised learning. Selain itu, model supervised learning juga digunakan dengan menggunakan model konvensional, dan hasilnya digunakan untuk analisis kontribusi dari fitur-fitur yang digunakan dalam klasifikasi. Terakhir, penelitian ini mengevaluasi kembali anotasi yang dilakukan oleh manusia dengan menggunakan kata kunci sebagai pendekatan untuk mengurangi kesalahan dalam dataset. Dengan pendekatan ini, berhasil ditemukan beberapa kesalahan anotasi pada dataset yang dianotasi oleh manusia. ...... The consultation questions on an online forum need to be answered by the appropriate specialist doctors to provide accurate and beneficial answers to the users asking the questions. In relation to this, this study discusses the development of a model that can automatically direct a health consultation question to a doctor with the corresponding specialization. Furthermore, the constructed model is a multi-label classification model because a question can be associated with more than one specialization. There are several issues addressed in this work. This research begins by evaluating the effectiveness of rule-based mapping methods in predicting data annotated by experts, and the results show a satisfactory level of success. Furthermore, a multi-label classification model is developed to classify the specialist domains of doctors. The model training is performed using various methods, including supervised learning, unsupervised learning, and semi-supervised learning. The best model is found through domain adaptive pre-training using IndoBERT-large as the reference model and involving unsupervised learning. Additionally, the supervised learning model is also used with a conventional model, and the results are used to analyze the contribution of the features used in the classification. Lastly, this research re-evaluates the annotations made by humans using keyword-based approaches to reduce errors in the dataset. With this approach, several annotation errors were successfully identified in the dataset annotated by humans.
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library