Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 4 dokumen yang sesuai dengan query
cover
Gregorius Bhisma
"Dalam era perkembangan teknologi, penerapan teknologi informasi menjadi kunci untuk meningkatkan efisiensi dan efektivitas operasional perusahaan. Data science memainkan peran penting dalam mengubah data besar menjadi pengetahuan yang berguna untuk pengambilan keputusan. Skripsi ini mengembangkan platform AutoML (Automated Machine Learning) pada aplikasi Lumba.ai yang dirancang untuk mempermudah proses prediksi tanpa memerlukan keterampilan teknis khusus. AutoML menawarkan tur otomatisasi untuk memilih model terbaik berdasarkan dataset yang diberikan, serta menyederhanakan proses pemrosesan data. AutoML diimplementasikan menggunakan message queuer dan worker secara asinkron. Prediksi pada tur AutoML dilakukan menggunakan tiga jenis metode prediksi, yaitu klasi kasi, regresi, dan klaster, dengan berbagai dataset untuk menilai kinerja model yang dihasilkan. Hasil penelitian menunjukkan bahwa Lumba.ai dapat memberikan hasil prediksi yang akurat dan e sien, serta memberikan visualisasi yang informatif untuk analisis lebih lanjut. Saran dan masukan dari pengguna juga diintegrasikan untuk meningkatkan fungsionalitas dan kegunaan platform.

In the era of technology development, the application of information technology is crucial for enhancing operational ef ciency and effectiveness. Data science plays a vital role in transforming big data into useful knowledge for decision-making. This thesis develops an AutoML (Automated Machine Learning) feature on Lumba.ai application, designed to facilitate prediction processes without requiring specialized technical skills. Lumba.ai offers automated features for selecting the best model based on the given dataset and simpli es data preprocessing. This feature is implemented by using asynchrnous worker and message queuer. Predictions from AutoML feature involves three types of prediction methods, that is classi cation, regression, and clustering, using various datasets to assess model performance. The results demonstrate that Lumba.ai provides accurate and ef cient predictions and offers informative visualizations for further analysis. User feedback is integrated to enhance the platform’s functionality and usability."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mohammad Bryan Mahdavikhia
"Dalam era perkembangan teknologi, penerapan teknologi informasi menjadi kunci untuk meningkatkan efisiensi dan efektivitas operasional perusahaan. Data science memainkan peran penting dalam mengubah data besar menjadi pengetahuan yang berguna untuk pengambilan keputusan. Skripsi ini mengembangkan platform AutoML (Automated Machine Learning) pada aplikasi Lumba.ai yang dirancang untuk mempermudah proses prediksi tanpa memerlukan keterampilan teknis khusus. AutoML menawarkan tur otomatisasi untuk memilih model terbaik berdasarkan dataset yang diberikan, serta menyederhanakan proses pemrosesan data. AutoML diimplementasikan menggunakan message queuer dan worker secara asinkron. Prediksi pada tur AutoML dilakukan menggunakan tiga jenis metode prediksi, yaitu klasi kasi, regresi, dan klaster, dengan berbagai dataset untuk menilai kinerja model yang dihasilkan. Hasil penelitian menunjukkan bahwa Lumba.ai dapat memberikan hasil prediksi yang akurat dan e sien, serta memberikan visualisasi yang informatif untuk analisis lebih lanjut. Saran dan masukan dari pengguna juga diintegrasikan untuk meningkatkan fungsionalitas dan kegunaan platform.

In the era of technology development, the application of information technology is crucial for enhancing operational ef ciency and effectiveness. Data science plays a vital role in transforming big data into useful knowledge for decision-making. This thesis develops an AutoML (Automated Machine Learning) feature on Lumba.ai application, designed to facilitate prediction processes without requiring specialized technical skills. Lumba.ai offers automated features for selecting the best model based on the given dataset and simpli es data preprocessing. This feature is implemented by using asynchrnous worker and message queuer. Predictions from AutoML feature involves three types of prediction methods, that is classi cation, regression, and clustering, using various datasets to assess model performance. The results demonstrate that Lumba.ai provides accurate and ef cient predictions and offers informative visualizations for further analysis. User feedback is integrated to enhance the platform’s functionality and usability."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Adella Rakha Amadea
"Dalam era perkembangan teknologi, penerapan teknologi informasi menjadi kunci untuk meningkatkan efisiensi dan efektivitas operasional perusahaan. Data science memainkan peran penting dalam mengubah data besar menjadi pengetahuan yang berguna untuk pengambilan keputusan. Skripsi ini mengembangkan platform AutoML (Automated Machine Learning) pada aplikasi Lumba.ai yang dirancang untuk mempermudah proses prediksi tanpa memerlukan keterampilan teknis khusus. AutoML menawarkan tur otomatisasi untuk memilih model terbaik berdasarkan dataset yang diberikan, serta menyederhanakan proses pemrosesan data. AutoML diimplementasikan menggunakan message queuer dan worker secara asinkron. Prediksi pada tur AutoML dilakukan menggunakan tiga jenis metode prediksi, yaitu klasi kasi, regresi, dan klaster, dengan berbagai dataset untuk menilai kinerja model yang dihasilkan. Hasil penelitian menunjukkan bahwa Lumba.ai dapat memberikan hasil prediksi yang akurat dan e sien, serta memberikan visualisasi yang informatif untuk analisis lebih lanjut. Saran dan masukan dari pengguna juga diintegrasikan untuk meningkatkan fungsionalitas dan kegunaan platform.

In the era of technology development, the application of information technology is crucial for enhancing operational ef ciency and effectiveness. Data science plays a vital role in transforming big data into useful knowledge for decision-making. This thesis develops an AutoML (Automated Machine Learning) feature on Lumba.ai application, designed to facilitate prediction processes without requiring specialized technical skills. Lumba.ai offers automated features for selecting the best model based on the given dataset and simpli es data preprocessing. This feature is implemented by using asynchrnous worker and message queuer. Predictions from AutoML feature involves three types of prediction methods, that is classi cation, regression, and clustering, using various datasets to assess model performance. The results demonstrate that Lumba.ai provides accurate and ef cient predictions and offers informative visualizations for further analysis. User feedback is integrated to enhance the platform’s functionality and usability."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Bouveyron, Charles
"Cluster analysis finds groups in data automatically. Most methods have been heuristic and leave open such central questions as: how many clusters are there? Which method should I use? How should I handle outliers? Classification assigns new observations to groups given previously classified observations, and also has open questions about parameter tuning, robustness and uncertainty assessment. This book frames cluster analysis and classification in terms of statistical models, thus yielding principled estimation, testing and prediction methods, and sound answers to the central questions. It builds the basic ideas in an accessible but rigorous way, with extensive data examples and R code; describes modern approaches to high-dimensional data and networks; and explains such recent advances as Bayesian regularization, non-Gaussian model-based clustering, cluster merging, variable selection, semi-supervised and robust classification, clustering of functional data, text and images, and co-clustering. Written for advanced undergraduates in data science, as well as researchers and practitioners, it assumes basic knowledge of multivariate calculus, linear algebra, probability and statistics."
Cambridge: Cambridge University Press, 2019
e20520634
eBooks  Universitas Indonesia Library