Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 11 dokumen yang sesuai dengan query
cover
Soeganda Formalidin
Abstrak :
Penelitian ini bertujuan untuk mencari korelasi yang kuat antar gen dan kondisi dari data ekspresi gen penyakit Diabetes Melitus (DM) pada sampel obesitas dan sampel kurus dengan menggunakan metode three phase biclustering. Tahap pertama pada metode ini adalah dengan menggunakan matriks dekomposisi Singular Value Decomposition (SVD) yang mentransformasikan data menjadi dua matriks berbasis gen dan kondisi. Selanjutnya pada tahap kedua menggunakan metode partisi Partition Around Medoids (PAM) pada dua matriks gen dan kondisi menggunakan jarak Euclidean sehingga jika digabung akan membentuk bicluster yang pada tahap tiga akan dievaluasi dengan menggunakan modifikasi lift algorithm berbasiskan korelasi Pearson yang cocok untuk mendeteksi bicluster model additive-multiplicative. Hasil dari implementasi algoritma yang digunakan pada dataset microarray dinamakan δ-corbicluster yang memiliki korelasi yang tinggi antar gen dan sampel. Implementasi dari tahap pertama dan kedua (SVDPAM) pada dataset DM dengan 1331 gen terseleksi menghasilkan 8 bicluster. Sedangkan hasil tahap ketiga yaitu modifikasi algoritma lift pada kedelapan bicluster ini menghasilkan 3 δ-corbicluster dengan masing-masing nilai korelasi yang tinggi yaitu 0,097, 0,095, 0,085, sehingga metode yang diusulkan dan hasil analisisnya pada gen dan sampel penyakit DM memiliki potensi besar ke depannya dalam penelitan pada bidang medis. ...... The purpose of this research is to find strong correlation among genes and conditions of Diabetes Melitus genes expression data which samples are obese and lean people using three phase biclustering. First step is to use matrix decomposition Singular Value Decomposition (SVD) to decompose matrix gene expression data into two global based gene and condition matrices. Second step is to use partition method Partition Around Medoid (PAM) to cluster gene and condition based matrices using Euclidean distance, forming several biclusters which further evaluated using modified lift algorithm based on Pearson correlation which is very appropriate method to detect additive-multiplicative bicluster type. The resulting bicluster of the proposed algorithm having strong correlation among genes and samples to microarray dataset are called δ-corbicluster. Implementation of the first and second step (SVD-PAM) to dataset DM with 1331 selected genes produces 8 biclusters. For the third step using modified lift algorithm to these 8 biclusters produces 3 δ-corbiclusters having strong correlation values: 0,097, 0,0095, 0,085, so that the proposed method and the result of analysis to genes and samples of DM have high potential in future medical researches.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
T49441
UI - Tesis Membership  Universitas Indonesia Library
cover
Fahrezal Zubedi
Abstrak :
Pada penelitian ini mengimplementasikan algoritma Similarity Based Biclustering dengan menggunakan PAM clustering pada tiga dataset ekspresi gen microarray. Penelitian ini bertujuan untuk mengetahui ekspresi regulasi dari masing-masing bicluster yang diperoleh dan mengetahui kinerja algoritma Similarity Based Biclustering-PAM clustering berdasarkan hasil analisis kelompok kondisi. Similarity based biclustering-PAM clustering secara teoritis terdiri dari empat tahap utama yaitu: mentransformasi data, membangun matriks similaritas, proses clustering khususnya dalam tesis ini menggunakan metode partisi PAM dan mengekstrak bicluster. Algoritma similarity based biclustering-PAM clustering dapat mengetahui ekspresi regulasi dari tiap bicluster pada tiga dataset yaitu: Diabetes Melitus tipe II, Diabetes Retinopati, dan Limfoma. Akurasi yang diperoleh dari algoritma Similarity Based Biclustering untuk masing-masing dataset yaitu Diabetes Melitus tipe II sebesar 0.55, Diabetes Retinopati sebesar 0.80 dan Limfoma sebesar 0.83. ...... In this research implements Similarity Based Biclustering algorithm by using PAM Clustering method in three dataset of microarray gene expression. Aim of this research is to know the regulated expression of each obtained bicluster and to know the performance of Similarity Based Biclustering PAM Clustering algorithm based on the result of group condition analysis. Similarity Based Biclustering is theoretically composed of four main stages transforming data, constructing matrix similarity, clustering process, especially in this thesis using PAM partition algorithm and extracting bicluster. Similarity Based Biclustering PAM is able to know the regulatory expression of each bicluster in three datasets Diabetes Mellitus type 2, Diabetes Retinopathy, and Lymphoma. Accuracy obtained from Similarity Based Biclustering algorithm for each dataset is 0.55 in data of type 2 diabetes mellitus, 0.80 in diabetic retinopathy data and 0.83 in lymphoma data.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
T49505
UI - Tesis Membership  Universitas Indonesia Library
cover
Sofia Debi Puspa
Abstrak :
Penelitian ini bertujuan untuk mengimplementasikan similarity based biclustering SBB dalam memperoleh bicluster sekumpulan gen dengan ekspresi yang similar di bawah kondisi tertentu yang signifikan pada data microarray. Secara teoritis similarity based biclustering terdiri atas tiga tahap utama, yaitu: membangun matriks similaritas baris gen dan matriks similaritas kolom kondisi , mempartisi masing-masing matriks similaritas dengan hard clustering khususnya dalam penelitian ini menggunakan partisi k-means, dan ekstrak bicluster. Sebelum mengimplementasikan metode SBB, strategi seleksi gen diterapkan dan selanjutnya dilakukan normalisasi. Perolehan evaluasi indeks silhouette pada dataset diabetic nephropathy, diabetic retinopathy dan lymphoma berturut-turut pada cluster kondisi yaitu 0,8304; 0,7853 dan 0,7382, sedangkan indeks silhouette untuk cluster gen yaitu 0,5382; 0,5408 dan 0,5464. Dan dari hasil analisis cluster kondisi, akurasi dari dataset diabetic nephropathy dan diabetic retinopathy yaitu 100 , sedangkan dataset lymphoma yaitu 98 . Selanjutnya dapat diketahui regulasi proses seluler yang terjadi pada bicluster dari ketiga dataset. Hasil analisis menunjukkan bahwa gen-gen yang diperoleh dari bicluster sesuai dengan fungsi gen dan proses biologis didukung oleh GO enrichment sehingga menjadi potensi yang besar bagi praktisi medis dalam tindak lanjut suatu penyakit yang diderita oleh pasien. ...... This study aims to implement similarity based biclustering SBB in obtaining a bicluster a set of genes that exhibit similar levels of gene expression under certain conditions that is significant in microarray data. Theoretically, similarity based biclustering consists of three main phase constructing the row gene similarity matrix and the column condition similarity matrix, partitioning each matrix similarity with hard clustering especially in this research using k means partition, and extracting bicluster. Before implementing the SBB method, the gene selection strategy is applied and subsequently normalized. The acquisition of silhouette index evaluation in diabetic nephropathy, diabetic retinopathy, and lymphoma on cluster condition respectively is 0.8304, 0.7853 and 0.7382, while the silhouette index for the gene cluster is 0.5382, 0.5408 and 0.5464. In addition, according to the cluster condition analysis, accuracy of dataset diabetic nephropathy and diabetic retinopathy is 100 , whereas dataset lymphoma is 98 . Furthermore, it can be known cellular regulation that occurs on the bicluster of the three datasets. The results of the analysis show that the genes obtained from bicluster are relevant to the function of genes and biological processes supported by GO enrichment , therefore it becomes a great potential for medical practitioners in the follow up of a disease suffered by the patient.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
T49530
UI - Tesis Membership  Universitas Indonesia Library
cover
Bertrand Jordan, editor
Abstrak :
This book provides a comprehensive overview of microarrays in diagnostics and biomarker development, covering DNA, peptide, protein and tissue arrays. The focus is on entities that are in actual clinical use, or quite close, and on recent developments, such as peptide and aptamer arrays. A further topic is the miniaturisation towards “nanoarrays”, which is expected to have great potential in clinical applications. Relevant issues of bioinformatics and statistical analysis of array data are discussed in detail, as well as the barriers to the commercialisation of array-based tests and the vexing IP issues involved.
Berlin: [Springer, ], 2012
e20417762
eBooks  Universitas Indonesia Library
cover
Nurul Hanifah
Abstrak :
Diagnosis kanker payudara umum menggunakan data morfologi dan infomasi klinis. Akan tetapi diagnosis kanker yang akurat dibutuhkan untuk menangani dan terapi yang tepat. Deteksi ekspresi gen merupakan cara yang dapat digunakan untuk menganalisis kanker hingga tingkat molekuler. Microarray adalah teknologi yang memungkinkan analisis ribuan ekspresi gen dalam waktu yang bersamaan. Pembelajaran mesin dapat digunakan untuk menganalisis pola pada microarray dataset. Model pembelajan dengan deep learning, seperti deep stacking network DSN diperlukan untuk data yang kompleks seperti pada microarray. DSN pertama kali diusulkan untuk mengatasi kekurangan dari deep learning pada umumnya. Selain itu dikarenakan tingginya dimensi data microarray, sebelum melalui proses pembelajaran diperlukan reduksi dimensi pada data microarray. Reduksi data menggunakan gene shaving, dimana data akan dikelompokan menjadi beberapa cluster dan juga dengan PCA. Selanjutnya data yang sudah direduksi melalui proses pembelajaran pada model DSN yang terdiri dari 2-layer, 3-layer dan 4-layer dengan laju pembelajaran 0.01, 0.1 dan 1.0. Parameter yang diukur adalah nilai akurasi, mean square error MSE dan waktu eksekusi, dimana nilai terbaik didapatkan pada DSN 2-layer dengan laju pembelajaran 1.0 pada data hasil reduksi PCA. ......The diagnosis of breast cancer uses morphological data and clinical information. However, an accurate cancer diagnosis is necessary for the proper treatment. Gene expression detection is a way that can be used to analyze cancer to the molecular level. Microarray is a technology that allows the analysis of thousands of gene expression at the same time. Machine learning can be used to analyze patterns in the microarray dataset. Machine learning with deep architecture deep learning, such as deep stacking learning DSN, is needed for complex data such as microarray. DSN was proposed to overcome the shortage of deep learning. In addition, due to the high dimension of microarray data, dimension reduction in microarray data is required before going through the learning process. Data reduction uses gene shaving, where data will be grouped into clusters and also PCA. Clusters found through the process of gene shaving is a cluster that carries important genetic information in cancer cells so that the gene can represent all data. Furthermore, the data has been reduced going through the learning process on the DSN model consisting of 2 layer, 3 layer and 4 layer with the learning rate of 0.01, 0.1 and 1.0. The parameters measured are the accuracy, mean square error MSE and execution time, which the best value is obtained on 2 layer DSN with learning rate 1.0 on data from the reduction of PCA.
Depok: Fakultas Teknik Universitas Indonesia, 2018
T50170
UI - Tesis Membership  Universitas Indonesia Library
cover
Selly Anastassia Amellia Kharis
Abstrak :
Kanker merupakan kelompok penyakit yang ditandai dengan pertumbuhan dan penyebaran sel-sel abnormal yang tidak terkendali. Jika penyebaran sel tersebut tidak terkendali, hal ini dapat menyebabkan kematian. Berdasarkan American Cancer Society, pendeteksian dini terhadap sel kanker dapat meningkatkan angka harapan hidup seorang pasien lebih dari 97 . Banyak penelitian yang telah meneliti mengenai klasifikasi kanker menggunakan microarray data. Microarray data terdiri dari ribuan fitur gen namun hanya memiliki puluhan atau ratusan sampel. Hal tersebut dapat menurunkan akurasi klasifikasi sehingga perlu dilakukannya pemilihan fitur sebelum proses klasifikasi. Pada penelitian ini dilakukan dua tahap pemilihan fitur. Pertama, support vector machine recursive feature elimination SVM-RFE digunakan untuk prefilter gen. Kedua, hasil pemilihan fitur SVM-RFE diseleksi kembali dengan menggunakan artificial bee colony ABC yang merupakan algoritma optimisasi berdasarkan perilaku lebah madu. Penelitian ini menggunakan dua dataset, yaitu data kanker paru-paru Michigan dan Ontario dari Kent Ridge Biomedical Dataset. Hasil percobaan dengan menggunakan SVM-RFE dan ABC menunjukkan nilai akurasi klasifikasi yang lebih tinggi daripada tanpa pemilihan fitur, SVM-RFE, dan ABC, yaitu 98 untuk data kanker paru-paru Michigan dengan menggunakan 100 fitur dan 97 untuk data kanker paru-paru Ontario dengan menggunakan 70 fitur. ......Cancer is a group of diseases characterized by the uncontrolled growth and spread of abnormal cells. If the spread is not controlled, it can result in death. Based on American Cancer Society, early detection of cancerous cells can increase survival rates for patients by more than 97 . Many study showed new aspect of cancer classification based microarray data. Microarray data are composed of many thousands of features genes and from tens to hundreds of instances. It can decrease classification accuracy so feature selection is needed before the classification process In this paper, we propose two stages feature selection. First, support vector machine recursive feature elimination recursive feature elimination SVM RFE is used to prefilter the genes. Second, the SVM RFE features selection result is selected again using Artificial Bee Colony ABC which is an optimization algorithm based on a particular intelligent behavior of honeybee swarms. This research conducted experiments on Ontario and Michigan Lung Cancer Data from Kent Ridge Biomedical Dataset. Experiment results demonstrate that this approach provides a higher classification accuracy rate than without feature selection, SVM RFE, and ABC, 98 for Michigan lung cancer dataset with using 100 features and 97 for Ontario lung cancer dataset with using 70 features.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
T49733
UI - Tesis Membership  Universitas Indonesia Library
cover
Abstrak :
Profil hTERT dan P73 pada kultur sel kanker mulut dibandingkan mukosa normal: studi pendahuluan. Perubahan genetik pada p53 memungkinkan terjadinya imortalisasi sel dan meningkatkan predisposisi terjadinya transformasi ke arah neoplasma. Hal ini terkait dengan aktivitas telomerase yang menjaga panjang telomer, yang aktivitasnya seharusnya dibatasi oleh p53. p73, yang merupakan homolog p53, mempunyai kemampuan supresi tumor yang mirip dengan p53. Tingkat ekspresi P73 dan human TERT kemungkinan berbeda pada berbagai jenis sel kanker dibandingkan dengan jaringan normalnya. Saat ini belum terdapat data tentang profil protein human TERT dan P73 pada sel lini karsinoma sel skuamosa oral (KSSO) dibandingkan dengan jaringan mukosa oral normal. Tujuan: Studi ini bertujuan untuk mendapatkan profil human TERT dan P73 pada sel lini KSSO dengan mutasi p53 dibandingkan dengan mukosa oral normal. Metode: Sel lini HSC-3 dan HSC-4 dengan mutasi p53 dikultur sedangkan mukosa oral normal dikumpulkan dari pasien tanpa kanker yang menjalani perawatan bedah mulut. Ekstraksi protein dan analisis profil human TERT dan P73 dilakukan dengan SDS-PAGE dan ditentukan berdasarkan perkiraan berat protein. Hasil: Pita human TERT jelas terlihat pada sel HSC-3 dan HSC-4 namun tidak pada mukosa oral normal. Densitas pita P73 pada sel HSC-3 terlihat lebih tebal dibandingkan pada sel HSC-4. Hanya 50% sampel mukosa oral normal memperlihatkan pita P73. Simpulan: Terlihat profil human TERT dan P73 yang berbeda pada sel kanker dan sel normal. Perbedaan ini kemungkinan bersifat spesifik tergantung jenis sel dan dipengaruhi oleh status p53. Perlu dilakukan penelitian lanjutan untuk menganalisis kemungkinan peran p73 dalam menggantikan fungsi p53 pada kanker mulut selanjutnya diperlukan.
Genetic alteration on p53 allows cellular immortalization and predisposes cells to neoplastic transformation. This immortalization is related to telomere length maintenance by telomerase. Human TERT is a key component of telomerase, which activity is suppressed by p53. The p73, the homolog of p53, has a similar ability in tumor suppression. The P73 is expressed at a different level in various cancer cells and normal tissues. Profile of human TERT and P73 in mutant p53 OSCC cell line and normal human oral mucosa have not been known. Objective: To observe human TERT and P73 profile in mutant p53 OSCC cell lines and normal human oral mucosa. Methods: The extracted protein of HSC-3 and HSC-4 cell lines and normal mucosal tissues were analyzed with SDS PAGE to detect human TERT and p73 expression based on the molecular weight. Results: The HSC-3 cell line showed thicker band density of P73 compared to its density of HSC-4. Only 50% of normal oral mucosa tissue showed thick P73 band density. The human TERT band was clearly shown in HSC-3 and HSC-4 cell lines but not in normal oral mucosa. Conclusion: Different profile of human TERT and P73 in OSCC cell lines and normal oral mucosa might be cell-type specific and influenced by the status of p53. Analysis of the role of p73 in these cancers might need further research to determine possible p73 substitution for p53 function.
Fakultas Kedokteran Gigi Universitas Indonesia, 2011
pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Wang, Sun-Chong
Boca Raton: CRC Press, Taylor & Francis Group, 2008
572.863 WAN d
Buku Teks  Universitas Indonesia Library
cover
Abstrak :
This book discuss early characterization of toxicity and efficacy would significantly impact the overall productivity of pharmaceutical R&D and reduce drug candidate attrition and failure. By describing the available platforms and weighing their relative advantages and disadvantages and including microarray data analysis.
Hoboken, New Jersey: John Wiley & Sons, 2009
e20393938
eBooks  Universitas Indonesia Library
cover
Abstrak :
This book introduces drug researchers to the novel computational approaches of pathway analysis and explains the existing applications that can save time and money in the drug discovery process. It covers traditional computational methods and software for pathway analysis microarray, proteomics, and metabolomics. It explains pathway reconstruction of diseases and toxic states, pathway analysis in various phases, dynamic modeling of drug responses, and more.
Hoboken, New Jersey: John Wiley and Sons, 2008
e20394421
eBooks  Universitas Indonesia Library
<<   1 2   >>