Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 7 dokumen yang sesuai dengan query
cover
Samsu Herawan
Abstrak :
ABSTRAK
Pembacaan mammografi merupakan aktifitas yang memerlukan pengetahuan dan kemampuan yang handal. Keberhasilan pengobatan kanker payudara tergantung pada deteksi dini dan diagnosis kelainan payudara. Mamografi adalah pemeriksaan terbaik yang tersedia untuk mendeteksi tanda-tanda awal kanker payudara seperti massa, kalsifikasi, asimetri bilateral dan distorsi arsitektur. Karena keterbatasan pengamat manusia, komputer memiliki peran utama dalam mendeteksi tanda-tanda awal kanker. Metode watershed diharapkan dapat memberikan informasi berbagai fitur yang menentukan kelainan dan fakta bahwa mereka sering tidak bisa dibedakan dari jaringan sekitarnya. computer aided diagnosis mammography diharapkan dapat membantu dalam pembacaan ketidak normalan pada payudara . Segmentasi watershed dengan pemilihan filter yang tepat dapat menghasilkan citra yang bisa membantu dalam melakukan diagnosa. Untuk proses diagnosis diperlukan nilai spesifisitas dan sensitivitas yang tinggi. Hasil evaluasi pada metode watershed dan batas ambang untuk nilai sensitivitas dan spesifisitas memiliki perbedaan 45% dan 12%. evaluasi ROC kombinasi sobel watershed memiliki nilai akurasi 83% dan kombinasi prewitt watershed memiliki nilai akurasi 85%
ABSTRACT
The reading of mammography is an activity that requires knowledge and a powerful ability. Successful treatment of breast cancer depends on early detection and diagnosis of breast abnormalities. Mammography is the best available inspection to detect early signs of breast cancer such as mass, calcification, bilateral asymmetry and architectural distortion. Due to the limitations of the human observer, the computer has a major role in detecting early signs of cancer. Watershed method is expected to provide information on various features that define the disorder and the fact that they often can not be distinguished from the surrounding tissue. mammography computer-aided diagnosis is expected to assist in the reading of abnormalities in the breast. Watershed segmentation with the selection of the right filter can produce images that could help to make diagnosis. For the diagnostic process is required specificity and high sensitivity. The results of the evaluation at watershed method and the threshold for sensitivity and specificity have a difference of 45% and 12%. ROC evaluation Sobel combination watershed has a value of 83% accuracy and combination prewitt watershed has a value of 85 % accuracy
2016
T46686
UI - Tesis Membership  Universitas Indonesia Library
cover
Ralind Remarla
Abstrak :
Dalam penelitian Computer Aided Diagnose (CAD) Radiografi Paru pasien dewasa dengan metode Fuzzy C Means (FCM), telah dilakukan dalam keadaan tahap awal. Penelitian ini bertujuan untuk mengetahui apakah metode clustering FCM dapat digunakan untuk membuat perangkat penolong untuk melihat abnormalitas pada paru-paru dari 200 data citra Radiografi sinar-X. Pembuatan perangkat dilakukan dengan menggunakan GUI pada Matlab. Perancangan di bagi menjadi dua metode menggunakan metode FCM otomatis dan manual kemudian untuk mengetahui perbedaan nilai piksel digunakan metode ambang rata-rata. Kedua metode ini berdasarkan intensitas derajat keabuan 0-256. Metode FCM digunakan untuk melihat visualisasi abnormalitas secara cepat dan mengetahui garis besar posisi yang abnormal. Kemudian diteruskan dengan segmen kotak dari metode ambang rata-rata untuk mengetahui perbedaan nilai pixel citra abnormalitas dan yang normal. Hasil penelitian nenujukkan bahwa, Kinerja Metode FCM Akurasi 57,7%, sensitifitas 50,0%, spesifikasi 89,5% , Overal Error 42,3% dan Presisi 95,1%. Sedangkan metode Segmen per kotak Akurasi 56,7%, sensitifitas 51,7%, spesifikasi 88,5% , Overal Error 43,3% dan Presisi 96,7%. berdasarkan penelitian dapat disimpulkan bahwa Metode FCM dalam paru hanya bisa menunjukkan visual secara cepat dan garis besar namun tidak memberikan akurasi yang cukup memuaskan, hal ini di karenakan data input yang random tidak dapat dijadikan patokan untuk ukuran keberhasilan. ...... In the study Computer Aided Diagnose (CAD) Lung Radiography adult patients with Fuzzy C Means (FCM), has been carried out in a state of infancy. This study aims to determine whether the FCM clustering method can be used to make the device helper to see abnormalities in the lungs of 200 image data of X-ray radiography. Making the device is done by using the GUI in Matlab. The design is divided into two methods using automated and manual methods FCM then to determine differences in pixel value threshold method is used on average. Both methods are based on the intensity of gray 0-256 degrees. FCM method is used for visualizing abnormalities quickly see and know the outline of an abnormal position. Then forwarded to the segment boxes of the average threshold method to determine differences in pixel values abnormalities and normal image. That research results, performance FCM method Accuracy 57.7%, 50.0% sensitivity, 89.5% specification, Overal Error 42.3% and 95.1% precision. While the method of segment per box Accuracy 56.7%, 51.7% sensitivity, 88.5% specification, Overal Error 43.3% and 96.7% precision. based study concluded that the method of FCM in the lungs can only show rapid visual and outline but does not give a satisfactory accuracy, it is in because random input data can not be used as a benchmark to measure success.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2015
T43858
UI - Tesis Membership  Universitas Indonesia Library
cover
M. Leo Eriyanto Yuliansyah
Abstrak :
Penelitian ini mengembangkan Computer Aided Diagnosis CAD radiografi paru anak dengan menggunakan metode segmentasi Particle Swarm Optimization PSO untuk membantu dokter mendeteksi paru yang abnormal. Metode PSO mencari abnormalitas berdasarkan nilai piksel. Metode PSO dikerjakan dengan dua variasi metode yaitu FCM Wienerfilter PSO dan FCM Adaphisteq PSO. Evaluasi dilakukan dengan menghitung ROC Receiver Operating Characteristics citra segmentasi tiap metode terhadap citra acuan evaluasi dokter. Metode FCM Wienerfilter PSO memiliki nilaiROC paling baik. Overall error metode ini yaitu 11.43 1.6 dibanding dengan metode FCM Adapthisteq PSO yaitu 28.57 1,6. Hal ini menggambarkan bahwa banyak kesalahan deteksi yang dilakukan pada metode FCM Adapthisteq PSO. Metode FCM Wienerfilter PSO ini memiliki nilai akurasi 88,57, sensitifitas 90,00, spesifitas 85,00, dan presisi 93,75 lebih tinggi dibanding dengan semua parameter ROC metode FCM Adaphisteq PSO yaitu akurasi 71,43, Sensitivitas 80,00, Spesifitas 50,00, dan Presisi 80.00. Hal ini membuktikan bahwa hasil deteksi metode FCM Wienerfilter PSO lebih banyak memiliki tingkat keberhasilan yang sesuai dengan evaluasi dokter dan lebih baik dalam mendeteksi citra abnormal. Pada citra abnormal nilai piksel metodeFCM wienerfilter PSO memiliki rentang 209-255, dan nilai piksel metodeAdapthisteq PSO memiliki rentang 206-255. ...... The study developed Computer Aided Diagnosis CAD children pulmonary radiography using Particle Swarm Optimization PSO segmentation method to help doctors detect abnormal lung. The PSO method searched abnormalities by value of the image pixel. PSO method used two variations method, namely FCM Wienerfilter PSO and FCM Adaphisteq PSO. The evaluation was done by calculating the ROC Receiver Operating Characteristics segmentation of each image against the reference image evaluation doctors. FCM Wienerfilter PSO method has better ROC value. Overall error of this method is 11.43 1.6 compared with the method of FCM Adapthisteq PSO is 28.57 1.6. This explain that many of the error detection on FCM Adapthisteq PSO method. ROC FCM Wienerfilter PSO results show the value of accuracy 88,57, sensitivity 90,00, specificity 85,00, and precision 93,75 is relatively higher than all parameter of ROC FCM Adaphisteq PSO method that isaccuracy 71,43, sensitivity 80,00, specificity 50,00, and precision 80.00. This proves that the results of the detection method of FCM Wienerfilter PSO has more success rates in accordance with doctor rsquo s evaluation and better at detecting abnormal image. Abnormal lung pixel values by the method of FCM wienerfilter PSO is 209 255, andAbnormal lung pixel values by the FCM Adapthisteq PSO methodis 206 255.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
T48492
UI - Tesis Membership  Universitas Indonesia Library
cover
Rahmi Seftina
Abstrak :
Penelitian ini mengembangkan Computer Aided Diagnosis CAD radiografi paru anak dengan menggunakan metode segmentasi Deformable Models untuk membantu mendeteksi abnormalitas. Metode Deformable Models mencari abnormalitas berdasarkan nilai piksel citra. Metode Deformable Models dikerjakan dengan dua variasi yaitu median filter Deformable Models dan wiener filter Deformable Models. Nilai piksel paru-paru abnormal dengan segmentasi wiener filter Deformable models adalah 186-255 dan median filter Deformable Models adalah 191-255. Metode wiener filter Deformable models menghasilkan nilai ROC lebih tinggi dibandingkan metode median filter dengan nilai akurasi 78,5, sensitivitas 74,5, spesifitas 80, presisi 90,0 dan overall error 21,0. ...... This study developed a correlation test Computer Aided Diagnosis CAD radiographic of children pulmonary using segmentation Deformable Models method for detecting Abnormalities. Deformable models method searched abnormalities by value of the image pixel. Deformable models method used two variations, namely median filter Deformable Models and wiener filter Deformable Models. Abnormal result lung pixel values with segmentation Wiener filter Deformable models is 186 255 and median filter Deformable Models is 190 255. Wiener filter Deformable models method have ROC result relatively higher than median filter Deformable models with value of accuracy 78,5, sensitivity 74,5, specificity 80.0, precision 90,0 and overall error of 21,0.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
T47662
UI - Tesis Membership  Universitas Indonesia Library
cover
Monica Nanda Helin
Abstrak :
Modalitas pencitraan yang sering digunakan pada diagnosis kanker kandung kemih adalah Computed Tomography (CT). Informasi dari hasil pembacaan citra CT diharapkan berupa volume pada jaringan abnormal yang berguna untuk penentuan tindakan medis selanjutnya. Namun karena pada setiap slice citra memiliki ukuran, bentuk dan lokasi kanker kandung kemih yang berbeda-beda, maka penentuan volume menjadi tidak mudah. Oleh karena itu untuk meningkatkan keakuratan dan konsistensi penentuan diagnosa dan volume jaringan abnormalnya maka diperlukan bantuan Computer-Aided Diagnosis (CAD). CAD dapat dikembangkan menjadi perhitungan volume jaringan abnormal berdasarkan segmentasi dan klasifikasi citra. Pada penelitian ini, sistem CAD yang dikembangkan menggunakan metode segmentasi, fitur ekstrasi berbasis Gray Level Co-Occurrence Matrix (GLCM) dan klasifikasi citra normal dan abnormal menggunakan k-Nearest Neighbors (kNN). Data yang digunakan pada penelitian ini adalah 300 citra CT kandung kemih dari Rumah Sakit Kanker Dharmais, terdiri dari 100 citra normal dan 200 citra abnormal dengan 210 citra digunakan sebagai data pelatihan dan 90 citra digunakan sebagai data pengujian. Hasil performa sistem klasifikasi citra berupa akurasi sebesar 94,28% untuk data pelatihan dan 91,22% untuk data pengujian. Pada penelitian ini dilakukan kalkulasi volume jaringan abnormal kandung kemih terhadap 6 pasien dan hasilnya diperoleh volume terkecil 4,15 cm³ dan terbesar 77,40 cm³. Selain itu ditunjukkan pula volume jaringan abnormal terkecil yang dapat dideteksi adalah sekitar 0,03 cm³. ......The most frequency using in the diagnosis of bladder cancer is computed tomography (CT). Information from CT image reading is expected to be in in the form abnormal tissue volume that is useful for determining the next treatment. However, the resulting image slices has a different size, shape and location of bladder cancer, determining the volume is not easy. Therefore, to improve the accuracy and consistency of reading medical images and abnormal tissue volume, Computer-Aided Diagnosis (CAD) can be assisted. CAD can be developed into abnormal tissue volume calculations based on image segmentation and classification. In this study, the CAD system was developed using preprocessing, segmentation, feature extraction based on Gray Level Co-Occurrence Matrix (GLCM) and normal and abnormal image classification using k-Nearest Neighbors (kNN). The data used in this study are 300 bladder CT images from Dharmais National Cancer Hospital, consisting of 100 normal images and 200 abnormal images. 210 images are used as training data, and 90 images are used as testing data. The results of CAD system performance in this study are in the form of the accuracy of 94.28% for training data and 91.22% for testing data. In this study, the volume of abnormal bladder tissue was calculated for 6 patients, and the results obtained the smallest volume is 4.15 cm³ and the largest 77.40 cm³. In addition, it is also shown that the smallest abnormal tissue slice in slice volume that can be detected is about 0.03 cm³.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Septia Ardiani
Abstrak :
Penelitian ini mengembangkan Uji Korelasi Computer Aided Diagnosis CAD radiografi paru anak dengan menggunakan metode segmentasi Markov Random Field MRF untuk membantu mendeteksi abnormalitas paru dengan kecenderungan infeksi. Metode MRF mencari abnormalitas berdasarkan nilai piksel citra. Metode MRF dikerjakan dengan empat variasi yaitu MRF tanpa filter, median filter MRF, wiener filter MRF dan adapthisteq MRF. ROC hasil segmentasi wiener filter relatif lebih tinggi dari tanpa filter. Hasil ROC wiener filter menunjukkan nilai akurasi akurasi akurasi 81,4 , sensitivitas 82,0 , spesifitas 80,0 , presisi 91,1 dan overall error 18,6 . Sedangkan ROC untuk tanpa filter maupun filter yang lain menunjukkan lebih rendah dari nilai ROC wiener filter. Namun perbedaan ROC untuk setiap jenis tingkat keberhasilan tidak lebih dari 5 , artinya keempat metode MRF masih dapat diimplementasikan. Nilai piksel paru abnormal dengan metode MRF tanpa filter, median filter MRF, dan adapthisteq MRF sama yaitu 205-255. Nilai piksel paru abnormal dengan metode wiener filter MRF yaitu 197-255. Citra paru belum dapat menentukan secara definitif penyakit infeksi paru pada anak. ...... This study developed a correlation test Computer Aided Diagnosis CAD radiographic of children pulmonary using segmentation Markov Random Field MRF method to detect lung abnormalities with infection trends. MRF method searched abnormalities by value of the image pixel. MRF method used four variations, namely MRF without a filter, median filter MRF, wiener filter MRF, and adapthisteq MRF. ROC segmentation results wiener filter is relatively higher than without a filter. ROC wiener filter results show the value of accuracy 81.4 , sensitivity 82.0 , specificity 80.0 , precision 91.1 and overall error of 18.6 . While the ROC for unfiltered and filter others show lower than the value of ROC wiener filter. However, differences in ROC for any kind of success rate is not more than 5 , meaning that all four methods MRF can still be implemented. Abnormal lung pixel value with MRF method without filter, median filter MRF, and adapthisteq MRF same namely 205 255. Abnormal lung pixel values by the method of wiener filter MRF is 197 255. Radiographic of children pulmonary can not definitively determine lung infections in children.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2016
T47396
UI - Tesis Membership  Universitas Indonesia Library
cover
Ni Larasati Kartika Sari
Abstrak :
ABSTRAK
Penelitian ini mengembangkan Computer Aided Diagnosis (CAD) untuk mamografi dengan menggunakan metode segmentasi Markov Random Field (MRF) dan local threshold. Metode local threshold mencari abnormalitas dengan membandingkan segmen citra abnormal dengan normal. Sementara itu, metode MRF mencari abnormalitas berdasarkan nilai piksel dan bentuk cluster. Metode MRF dikerjakan dengan dan tanpa median filter, contrast enhancement histeq dan CLAHE. Metode segmentasi local threshold memiliki sensitivitas 77,8%, akurasi 68,4%, spesifitas 60,4%, presisi 62,5%, dan overall error 31,6%. Rendahnya keberhasilan disebabkan bentuk payudara pada data sampel tidak seragam, sehingga tiap segmen dari tiap citra belum tentu menunjukkan posisi yang sama. Segmentasi citra MRF yang dilakukan tanpa filter dan contrast enhancement, memiliki keberhasilan terendah. Hal ini membuktikan bahwa citra mamografi memiliki kontras yang rendah dan noise yang tinggi. Metode MRF dilengkapi dengan median filter memiliki akurasi tertinggi (87,0%) dan overall error terendah (12,8%), yang berarti metode ini adalah metode yang paling baik dalam melakukan deteksi sesuai dengan diagnosis dokter. Metode histeq+MRF memiliki sensitivitas yang tinggi (95,9%) dan spesifitas yang rendah (76,2%) yang menunjukkan bahwa metode ini berhasil mendeteksi citra abnormal sebagai abnormal, namun banyak mendeteksi citra normal sebagai abnormal. Metode CLAHE+MRF memiliki nilai spesifitas tertinggi (92,2%) dan sensitivitas terendah (73,1%) yang berarti metode berhasil mendeteksi citra normal sebagai normal, namun banyak mendeteksi citra abnormal sebagai normal. Dalam menentukan sifat benign dan maglina dari cluster abnormal, metode histeq+MRF merupakan metode yang paling berhasil dalam memvisualisasi citra dengan diagnosis maglina.
ABSTRACT
This research developed Computer Aided Diagnosis (CAD) for mammography using Markov Random Field (MRF) and local thereshold method. The Local thereshold methods finds abnormalities by comparing segments from abnormal image. While, MRF methods find abnormalities based on the pixel value and cluster's shape. In this research, the MRF method carried out with median fiter, histeq, and CHALCE contrast enhancement. MRF without any filter and contrast enhancement also done. The sensitivity, accuracy, specfity, presision and overall error of local thereshold method sequentially are 77.8%, 68.4%, 60.4%, 62.5%, and 31.6%. The low result caused by the diversity of the breast's from in the sample, so that each segment on each image doesn't refer to the same anatomical position. MRF segmentationwithout any filter and contrast enhancement gave the worst result. This result proved that mammography images have poor contrast and lot of noise. MRF method with median filter has the highestaccuracy (87.0%) and the lowest overall error (12.8%). This score shows that median filter + MRF method is the best method that can matches doctor's diagnosis. Histeq+MRF method has the highest sensitivity (95.9%) and the lowest specifity (76.52%). This result indicates that histeq+MRF method succesfully detect abnormal image as abnormal, but detect many the normal images as abnormal. CLAHE+MRF method has the highest specifity (92.2%) and the lowest sensitivity (73.1%). It shows that this method has a good performance in detecting normal image as normal but detect many abnormal images as normal. Histeq+MRF method shows the best performance in visualizing maglina clusters.
2016
T45203
UI - Tesis Membership  Universitas Indonesia Library