Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 50 dokumen yang sesuai dengan query
cover
Iing Fitria
Abstrak :
ABSTRAK
Menganalisis populasi bakteri Streptococcus adalah penting karena spesies ini dapat menyebabkan karies gigi, periodental (plak), halitosis (bau mulut) dan masih banyak lagi masalah yang dapat ditimbulkan. Dalam tesis ini akan dibahas hubungan kekerabatan antara bakteri Streptococcus pada air liur dengan menggunakan pohon filogenetik dari metode agglomerative clustering. Dimulai dengan adanya barisan DNA bakteri Streptococcus yang diambil dari pangkalan data gen (GenBank) yang akan disejajarkan, proses pensejajaran yang dilakukan menggunakan Algoritma Needleman-Wuncsh untuk pensejajaran global. Hasil pensejajaran tersebut berupa skor optimal yang merupakan jarak antara dua barisan DNA bakteri Streptococcus. Skor-skor optimal dikumpulkan dalam satu matriks kemudian membuat pohon filogenetik dengan metode agglomerative clustering yang terdiri atas teknik single linkage,complete linkage dan average linkage. Pada setiap teknik, banyaknya kelompok sama dengan banyaknya individu spesies. Spesies yang paling mirip dikelompokkan sampai akhirnya kemiripan berkurang maka terbentuk kelompok tunggal. Hasil dari pengelompokan berupa pohon filogenetik dan cabang-cabang yang bergabung merupakan tingkatan jarak yang terbentuk. Semakin kecil jarak, maka semakin besar kemiripan spesies serta mengimplementasikannya dengan menggunakan perangkat lunak berbasis open source (Oktave).
ABSTRACT
Analyzing population of Streptococcus bacteria is important because these spesies can cause dental caries, periodontal, halitosis (bad breath) and more problems.This paper will discuss the phylogenetically relation between the bacterium Streptococcus in saliva using a phylogenetic tree of agglomerative clustering methods. Starting with the bacterium Streptococcus DNA sequence obtained from the GenBank to be aligned, the alignment is performed using the Neddleman-Wuncsh Algorithm for global alignment. The alignment results in the optimal score or the distance between DNA sequence of the bacterium Streptococcus one another. Optimal scores collected in a single matrix. Agglomerative clustering technique consisting of single linkage, complete linkage and average linkage. In this technique the number of group sequal to the number of individual species. The most similar species is grouped until the similarity decreases and then formed a single group. Results of grouping is a phylogenetic tree and branches that join an established level of distance, that the smaller distance the more the similarity of the larger spesies implementation is using the Octave, an open source program.
2013
T35950
UI - Tesis Membership  Universitas Indonesia Library
cover
Asita Darma Irawati
Abstrak :
Pertimbangan finansial menjadi salah satu penentu utama apakah seseorang akan melanjutkan pendidikan ke tingkat yang lebih tinggi atau tidak, sehingga diperlukan beasiswa untuk membantu mahasiswa dalam menempuh pendidikan tinggi, terutama hingga tingkat doktor. Besar biaya yang dikeluarkan oleh lembaga penyedia beasiswa kepada penerima beasiswa tentunya diharapkan sepadan dengan kualitas ilmu yang diperoleh. Oleh karena itu, penelitian ini bertujuan untuk membahas analisis pengelompokan universitas terbaik dunia berdasarkan komponen biaya pendidikan program doktor dengan metode K-Means. Universitas pada penelitian ini diambil dari QS World University Rangkings (WUR) 2022. Analisis eksploratori data dilakukan dan diperoleh bahwa terdapat 83 dari 472 universitas di dunia memberi bantuan dana penuh untuk studi program doktor. Nilai Silhouette sebesar 0,72 menunjukkan bahwa tiga merupakan jumlah kelompok yang optimal bagi data. Sehingga terbentuk kelompok A sebanyak 328 universitas, kelompok B sebanyak 108 universitas, dan kelompok C sebanyak 36 universitas. Kelompok A terdiri dari universitas dengan SPP dan biaya hidup per bulan relatif rendah, kelompok B sedang, dan kelompok C tinggi. Untuk biaya transportasi udara, kelompok B cenderung rendah, sedangkan kelompok A dan C relatif serupa dan lebih mahal dari kelompok B. Sementara untuk biaya visa, kelompok A cenderung lebih murah, sedangkan kelompok B dan C cenderung serupa dengan biaya lebih mahal. Berdasarkan analisis ini, penulis memberikan saran universitas yang bisa dipertimbangkan lembaga pemberi beasiswa sebagai perguruan tinggi tujuan. ......Financial concern has been one of the main reasons why an individual wants to pursue higher education. That is why scholarship is needed to help students earn an education, especially until doctoral degree. The amount of money spent by institution who give scholarship must be equivalent with the quality of knowledge an awardee got. This study aims to do clustering analysis of the world’s top universities based on tuition fee components for doctoral program using K-Means method. The object of this study are universities based on QS World University Rankings 2022. Exploratory data analysis is done and found that there are 83 out of 472 universities in the world who give fully funded program for doctoral study. Based on the silhouette value of 0.72, three is the best number of clusters for the data. Group A, B, C consists of 328, 108, and 36 universities in respective order. Group A consists of universities who have chepear tuition fee and monthly living cost compared to Group B dan C. However, Group B consists of universities who have cheaper transportation, meanwhile Group A and C are quiet similar. For visa, Group A is cheaper compared to Group B and C which are similar. Based on the results, recommendations are given to the institution who provide scholarship about the objective university for doctoral study.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Anderberg, Michael R.
New York: Academic Press, 1973
519.53 AND c
Buku Teks  Universitas Indonesia Library
cover
Banjarnahor, Evander
Abstrak :
Berdasarkan data WHO pada pertengahan Juli 2021 lebih dari 185,2 juta orang di seluruh dunia terinfeksi virus corona atau Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Virus ini menyerang penapasan manusia yang dapat mengakibatkan infeksi paru-paru pada manusia dan bahkan dapat menyebabkan kematian. Tercatat bahwa lebih dari 4 juta orang di seluruh dunia meninggal akibat terinfeksi virus corona. Di Indonesia sendiri pada pertengahan Juli 2021 tercatat lebih dari 2,4 juta orang ternfeksi virus corona dan lebih dari 65,4 ribu orang meninggal akibat terinfeksi virus corona. Berdasarkan data tersebut, perlu dilakukan analisis kekerabatan virus SARS-CoV-2 untuk mengurangi penyebaran dan memberikan batasan sosial dari negara satu dengan negara lainnya. Identifikasi kekerabatan dari virus covid-19 dan penyebarannya dapat dilakukan dengan cara pembentukan pohon filogenetik dan clustering. Pada penelitian ini pohon filogenetik akan dibangun berdasarkan metode Hierarchical Clustering dengan menggunakan metode Multiple Encoding Vector dan K-Mer berdasarkan translasi DNA kodon menjadi asam amino. Jarak Euclidean akan digunakan untuk menentukan matriks jarak. Penelitian ini selanjutnya menggunakan metode K- Means Clustering untuk melihat penyebarannya, dimana nilai k ditentukan dari jumlah centroid yang dihasilkan dari metode Hierarchical Clustering. Penelitian ini mengambil sampel barisan DNA SARS-CoV-2 dari beberapa negara yang tertular. Dari hasil simulasi, nenek moyang SARS-CoV-2 berasal dari China. Hasil analisis juga menunjukkan bahwa leluhur covid-19 yang paling dekat dengan Indonesia berasal dari India, Australia dan Spanyol. Selain itu dari hasil simulasi dihasilkan bahwa barisan DNA SARS-CoV-2 terdiri dari 9 cluster dan cluster keenam adalah kelompok yang memiliki anggota paling banyak. Hasil analisis juga menunjukkan bahwa metode ini sangat opitimal dalam pengelompokan data dengan nilai 97.4%. ......Based on WHO data in middle of July 2021, Coronavirus or Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is infecting more than 185.2 million people worldwide. The virus attacks human breathing, which can cause lung infections and can even cause death. More than 4 million people worldwide have died due to being infected with the coronavirus. In Indonesia alone, in mid-July 2021, there were more than 2.4 million people infected with the corona virus and more than 65.4 thousand people died from being infected with the corona virus. Based on those covid-19 survivor data, it is necessary to carry out a kinship analysis of the coronavirus to reduce its spreading. Identification of the kinship of the covid- 19 virus and its spread can be done by forming a phylogenetic tree and clustering. This study uses the Multiple Encoding Vector method and K-mer based on translation DNA codon to amino acid in analyzing sequences and Euclidean Distance to determine the distance matrix. This research will then use the Hierarchical Clustering method to determine the number of initial centroids and cluster, which will be used later by the K-Means Clustering method kinship in SARS-CoV-2 DNA sequence. This study took samples of DNA sequences of SARS-CoV-2 from several infected countries. From the simulation results, the ancestors of SARS-CoV-2 came from China. The results of the analysis also show that the closest ancestors of covid-19 to Indonesia came from India, Australia and Spain. In addition, the ancestors of SARS-CoV-2 came from China. The SARS- CoV-2 DNA sequence is also consisted of 9 clusters, and the sixth cluster is the group that has the most members. The results also show that this method is very optimal in a grouping of data with a value of 97.4%.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Anne Parlina
Abstrak :
Tren adalah suatu pola yang berulang, sementara analisis tren merupakan praktik pengumpulan dan analisis data dalam upaya untuk menemukan pola tersebut. Analisis tren adalah suatu metode untuk memproyeksikan kondisi masa depan berdasarkan data masa lalu hingga saat ini. Tinjauan literatur sistematis, bibliometrik, dan topic modeling adalah beberapa contoh pendekatan yang sering dipakai untuk menangkap fenomena perkembangan tren sains dan teknologi. Penelitian ini bertujuan untuk melakukan pengujian dan implementasi algoritma deteksi topik berbasis clustering yang dikombinasikan dengan analisis kualitatif dalam pendeteksian tren topik untuk mendapatkan gambaran yang menyeluruh mengenai konsep, struktur ilmiah, topik utama, dan perkembangan bidang teknologi big data dan smart sustainable city. Analisis topik dilakukan terhadap kumpulan data bibliografi publikasi ilmiah terkait kedua bidang tersebut yang didapat dari basis data Scopus dan CORE. Pengujian terhadap kinerja algoritma Deep-autoencoder based Fuzzy C-Means (DFCM) untuk deteksi topik dari corpus dokumen publikasi ilmiah menunjukkan bahwa algoritma DFCM menunjukkan kinerja yang baik serta dapat mengungguli kinerja algoritma-algoritma standar yang banyak dipakai untuk pendeteksian topik seperti Non-negatif Matrix Factorization (NMF) dan Latent Dirichlet Allocation (LDA) pada corpus dengan ukuran besar. Analisis hasil clustering terhadap data publikasi ilmiah memberikan gambaran perkembangan dan topik-topik yang menjadi “highlight” dalam periode tertentu, mencari research gap dan mengetahui karakteristik penelitian, serta memprediksi topik penelitian apa saja yang menjanjikan di masa depan. ......A trend is a recurring pattern, while trend analysis is the practice of collecting and analyzing data to find that pattern. Trend analysis is a method for projecting future conditions based on past to present data. Systematic literature review, bibliometrics, and topic modeling are examples of approaches that are often used to capture the phenomenon of the development of science and technology trends. This study examined and implemented clustering-based topic detection algorithms, combined with qualitative analysis, to comprehensively picture the concept, scientific structure, main topics, and developments in big data technology and smart and sustainable city. The topic analysis is performed on collecting bibliographic data from scientific publications related to these two fields obtained from the Scopus and CORE database. In this research, the deep-autoencoder based on the Fuzzy C-Means (DFCM) algorithm's performance for topic detection from the corpus of scientific publication documents was examined. Based on the experiment's results, it can be concluded that the DFCM algorithm shows good performance and can outperform standard algorithms that are widely used for topic detection, such as Non-negative Matrix Factorization (NMF) and Latent Dirichlet Allocation (LDA) on topic detection tasks in huge corpus text. The clustering results analysis on scientific publication data provides an overview of research topics and developments that become "highlights" in a certain period, discover research gaps and characteristics, and predict what research topics are promising in the future.
Depok: Fakultas Teknik Universitas Indonesia, 2021
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Zalfa Nabilah
Abstrak :
ABSTRACT
Dalam dunia arsitektur, Sefaira digunakan secara bersamaan dalam process desain untuk menganalisa ketahanan yang dikenal di level internasional. Proyek tugas akhir ini mengukuhkan nilai kelestarian terhadap lingkungan serta rasa komunitas sebagai fokus dasar untuk membangun ulang kehidupan asli masyarakat Australia pinggiran kota. Pembangunan cluster ditujukan untuk 230 orang dengan maksimal 80m2 luas bangunan per-rumah. Arahan desain adalah untuk merancang pola induk berdasarkan pendekatan keberlanjutan. Proyek ini menguji apakah pertanian yang membaharui memiliki peran dalam pembuatan kota modern. Oleh karena itu, arsitektur yang dirancang bersifat menyambungkan kembali dari apa yang hilang dengan Sefaira sebagai panduan.
ABSTRACT
In architecture world, Sefaira is used respectively on the design process to analyse the sustainability of a building and product as an internationally recognized rating system. This final project consolidates sustainability values and sense of community as the main focus as it is to recreate an Australian authentic suburbia living. The development of cluster is for 230 residents with R40 residential subdivision zoning or equivalent as maximum of 80m2 built area per-house. The design brief given by Dr. Simon Pendal, one of lecturer in Curtin University and architectural practice in Perth, is to propose a masterplan design based on sustainability approach. The project test whether regenerative agriculture has a role to play in the making of the contemporary city. Accordingly, the appropriate architecture is to reconnect to what has been missing based on Sefaira as a guidance.
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Alfia Choirun Nisa
Abstrak :
Keberhasilan pembangunan suatu negara dapat dilihat dari kondisi kesejahteraan rakyatnya. Peningkatan kesejahteraan rakyat menjadi sasaran utama dalam kegiatan pembangunan yang dilaksanakan oleh pemerintah. Agar pembangunan yang dilakukan efektif dan tepat sasaran, perlu dilakukan pengelompokan untuk mengetahui karakteristik wilayah. Penelitian ini membahas mengenai pengelompokan kabupaten/kota di Pulau Jawa berdasarkan indikator kesejahteraan rakyat tahun 2022. Kesejahteraan yang diukur merupakan kesejahteraan materi. Variabel yang digunakan dalam penelitian ini adalah persentase penduduk miskin, PDRB per kapita atas dasar harga berlaku, rata-rata lama sekolah, harapan lama sekolah, persentase pengeluaran per kapita untuk makanan, tingkat pengangguran terbuka, jumlah penduduk, kepadatan penduduk, dan angka harapan hidup. Terdapat dua pendekatan yang digunakan dalam mengelompokkan kabupaten/kota beserta variabel-variabelnya. Pendekatan pertama adalah mengelompokkan kabupaten/kota dan variabel-variabelnya secara simultan dengan menggunakan metode biclustering plaid model. Pendekatan kedua adalah mengelompokkan kabupaten/kota menggunakan clustering metode Ward dan dilanjutkan dengan metode biplot. Tujuan penelitian ini adalah membandingkan hasil kedua pendekatan tersebut, yaitu hasil biclustering dan hasil cluster-biplot pada data 119 kabupaten/kota di Pulau Jawa pada tahun 2022 berdasarkan indikator kesejahteraan rakyat. Berdasarkan hasil penelitian, didapatkan jumlah kelompok dari kedua pendekatan tersebut adalah sebanyak 2 dengan kelompok 1 merupakan wilayah yang lebih sejahtera daripada kelompok 2. Ditinjau dari nilai standar deviasinya, kelompok hasil biclustering plaid model memiliki nilai standar deviasi yang lebih kecil dibanding kelompok hasil cluster-biplot. Dengan demikian, secara umum pendekatan pertama menghasilkan kelompok yang lebih baik karena lebih homogen dibandingkan dengan pendekatan kedua. ......The success of a country's development can be known from the well-being of its people. Improving the welfare of the population is the main goal in the development activities carried out by government. To ensure that development is effective and targeted, grouping is needed to understand the characteristics of the region. This study discusses the grouping of regencies/cities in Java based on the people's welfare indicators in 2022. The measured welfare is material well-being. Variables used in this study are the percentage of the poor population, GDP per capita at current prices, average length of schooling, expected length of schooling, percentage of per capita expenditure on food, open unemployment rate, population, population density, and life expectancy. There are two approaches used in grouping regencies/cities along with their variables. The first approach is to group regencies/cities and their variables simultaneously using plaid model biclustering method. The second approach is to group regencies/cities using the Ward clustering method and then followed by the biplot method. The aim of this study is to compare the results of these two approaches, namely the biclustering results and the cluster-biplot results on data from 119 regencies/cities in Java in 2022 based on people's welfare indicators. Based on the results of this study, the number of groups from each approach is 2, with group 1 being more prosperous than group 2. Judging from the standard deviation values, the plaid model biclustering result groups have lower standard deviation values compared to the cluster-biplot result groups. Therefore, in general the first approach produces better groups as they are more homogeneous compared to the second approach.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sri Agustina P.
Abstrak :
ABSTRAK
Salah satu metode dalam teknik Analisis Multivariat yang berkenaan dengar pengelompokan obyek atau variabel adalah Analisis Cluster. Analisis Cluster mengelompokkan obyek atau variabel semata-mata berdasarkan similaritas mereka, sehingga kelompok cluster yang dihasilkan akan memiliki variabilitas dalam cluster yang lebih kecil daripada variabilitas antar cluster. Dengan Analisis Cluster kita dapat memecahken populasi secara empirik dalam beberapa kelompok yang relatif homogen untuk memudahkan analisis statistik selanjutnya. Sebagai contoh aplikasi 5 Analisis Cluster dengan metode Nonhirarki (K-Means) digunakan untuk mengelompokkan secara empirik 324 Rumah Sakit Umum Departemen Kesehatan dan Pemerintah Daerah Republik Indonesia yang diukur peda 59 variabel untuk dilihat kesesuaiannya dengan pengelompokan atas tipe A. B. C. D. berasarkan kriteria Departemen Kesehatan Republik Indonesia.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 1992
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Esti Ramaditia Mulatsih
Abstrak :
ABSTRAK
Analisis cluster merupakan teknik multivariat yang digunakan untuk mengelompokkan objek berdasarkan karakteristik yang dimilikinya. Salah satu teknik dalam analisis cluster adalah metode Fuzzy K-Means lebih dikenal dengan Fuzzy C-Means , yang merupakan versi fuzzy dari metode K-Means clustering. Seperti pada metode K-Means, FCM juga sangat sensitif terhadap penentuan pusat-pusat awal cluster. Untuk mengatasi permasalahan tersebut, diusulkan modifikasi dari metode FCM dengan menggunakan metode sampling dengan probabilitas. Metode sampling digunakan untuk menaksir lokasi pusat-pusat awal cluster untuk digunakan ke dalam proses clustering. Dalam tugas akhir ini, metode sampling yang digunakan adalah simple random sampling dan ranked set sampling. Modifikasi dari metode FCM dengan menggunakan kedua metode sampling tersebut masing-masingnya disebut dengan SRS Fuzzy C-Means dan Ranked Fuzzy C-Means. Kedua metode tersebut kemudian diuji pada himpunan data pasien liver di India. Hasil eksperimen menunjukkan bahwa Ranked Fuzzy C-Means lebih efisien dibandingkan SRS Fuzzy C-Means dan FCM.
ABSTRACT Cluster analysis is a multivariate technique that is used to group objects based on characteristics. One technique in cluster analysis is a method Fuzzy C Means or better known as Fuzzy C Means , which is a fuzzy version of K Means clustering method. As the K Means method, FCM is also very sensitive to the determination of the initial cluster centers. To overcome these problems, the proposed modification of the FCM method using probability sampling methods. The sampling method is used to estimate the initial cluster centers to be used in the clustering process. In this thesis, the sampling method used was simple random sampling and ranked set sampling. Modifications of the FCM method using both the sampling method each being with SRS Fuzzy C Means and Ranked Fuzzy C Means. Both methods are then tested on a data set of liver patients in India. The experimental results showed that Ranked Fuzzy C Means is more efficient than SRS Fuzzy C Means and FCM.
Depok: Universitas Indonesia, 2017
S66638
UI - Skripsi Membership  Universitas Indonesia Library
cover
Erica
Abstrak :
Diversifikasi portofolio telah dijadikan solusi dalam memitigasi risiko dalam berinvestasi. Tujuan utama diversifikasi portofolio adalah untuk mengurangi variansi return dibandingkan dengan investasi pada satu saham tertentu. Metode Clustering, misalnya Agglomerative Clustering, digunakan untuk mengelompokkan saham-saham ke dalam masing-masing klaster yang homogen berdasarkan risiko. Klaster-klaster yang terbentuk kemudian akan digunakan sebagai acuan diversifikasi portofolio. Objek yang digunakan dalam metode clustering adalah 7 skor rasio finansial PER, EPS, PEG, DER, ROE, Current Ratio dan Profit Margin dari setiap saham. Selanjutnya, proporsi dari setiap saham pembentuk portofolio ditentukan melalui aplikasi Genetic Algorithm ke masing-masing klaster. Pada penelitian ini, metode Genetic Algorithm dibangun berdasarkan model MVCCPO sehingga membentuk metode Genetic Algorithm Constrained. Performa dari Agglomerative Clustering Genetic Algorithm Constrained yang dievaluasi menggunakan data aktual, menghasilkan portofolio yang mampu mengalahkan return portofolio pasar dan memiliki rata-rata return yang lebih besar dibandingkan dengan portofolio yang dikonstruksi dengan metode Genetic Algorithm saja. Namun, dengan hubungan linear antara risiko dan return, adalah masuk akal bahwa portofolio dengan return yang lebih besar akan memiliki risiko yang lebih besar pula.
The purpose of portfolio diversification is to reduce the return rsquo s variance risk compared with a single stock investment or undiversified portfolio. The primary motivation of this research is to investigate the portfolio selection strategies through clustering and genetic algorithm. Clustering serves as a method to cluster assets with similar financial ratio scores the scores of EPS, PER, PEG, ROE, DER, Current Ratio and Profit Margin. By clustering method such as Agglomerative Clustering, stocks with similar risk profile are clustered together and the clusters produced can be used in diversifying portfolio. Genetic Algorithm will then be applied to each resulting cluster to obtain the optimal proportion of each stock in the portfolio. The Genetic Algorithm used in this study is built from the MVCCPO model hence making it a Constrained Genetic Algorithm. The performance of Constrained Genetic Algorithm refined with Agglomerative Clustering in portfolio optimization, evaluated based on some actual datasets, gives a portfolio that beats the market and has bigger expected return than a portfolio constructed with only Genetic Algorithm. Due to the direct relationship of risk and return, it is logical to expect portfolio with a bigger return would have a bigger risk.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5   >>