Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 235 dokumen yang sesuai dengan query
cover
Zuherman Rustam
Abstrak :
Komputasi intelejensia yang digunakan dalam masalah klasifikasi pola dapat digolongkan menjadi dua bagian, yaitu yang berbasis pada Neural Network dan yang berbasis pada Pembelajaran Statistika (Statistical Learning). Pembelajaran yang berbasis statistika, pertama kali ditemukan oleh Vapnik pada dekade tujuh-puluhan. Untuk masalah klasifikasi pola Vapnik mengembangkan metode hyperplane optimal separation, atau dikenal juga dengan nama metode Support Vector Machines (SVM). Pada awalnya SVM dirancang hanya untuk menyelesaikan masalah klasifikasi biner, yaitu dari data-data yang ada, diklasifikasikan menjadi dua kelas. Untuk mengklasifikasikan data yang terdiri dari lebih dari dua kelas, metode SVM tidak dapat langsung digunakan. Ada beberapa metode yang dapat digunakan untuk menyelesaikan masalah klasifikasi multikelas SVM yaitu: metode One-vs-One dan metode One-vs-Rest. Kedua metode ini merupakan perluasan dari klasifikasi biner SVM. Kedua metode tersebut akan dibahas di artikel ini dan akan dilihat kinerjanya dalam mengklasifikasikan aroma. Data aroma yang digunakan dalam percobaaan ini terdiri dari 3 jenis aroma, masing-masing aroma terdiri atas 6 kelas. Pembagian kelas ini berdasarkan pada konsentrasi alkohol yang dicampurkan pada masing-masing aroma. Misalkan untuk aroma A, terdapat 6 jenis aroma A dengan kandungan alkohol : 0%, 15%, 25%, 30%, 45% dan 75%. Kinerja dari kedua metode diukur berdasarkan kemampuan untuk mengenal dan mengklasifikasikan aroma, dengan tepat dan sesuai dengan jenis atau kelas, dari data yang diberikan.
Aroma classification using one-vs-one and one-vs-rest methods. Computational Intelligence used in pattern classification problem can be divided into two different parts, one based on Neural Network and the other based on Statistical Learning. The Statistical Learning discovered by Vapnik on 70-est decade. For the pattern classification, Vapnik developed hyperplane optimal separation, which is known as Support Vector Machines Method (SVM). In the beginning, SVM was designed only to solve binary classification problem, where data existing are classified into two classes. To classify data whose consist of more than two classes, the SVM method can not directly be used. There are several methods can be used to solve SVM multiclasses classification problem, they are One-vs-One Method and One-vs-Rest Method. Both of this methods are the extension of SVM binary classification, they will be discussed in this article so that we can see their performance in aroma classification process. Data of aroma used in this experiment is consisted of three classes of aroma, each of them has six classes. The division of this class is based on alcohol concentration mixed into each of those aromas. For example, for aroma A, there are six kinds of aroma A with different alcohol concentration: 0%, 15%, 25%, 30%, 45% and 75%. The performance of these methods is measured based on their ability to recognize and classify aroma, precisely and match with the right class or variety of data existed.
Depok: Lembaga Penelitian Universitas Indonesia, 2003
AJ-Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Abstrak :
There are two categories of well-known approach (as basic principle of classification process) for leraning structure of Bayesian Neywork (BN) in data mining (DM): ....
ITJOICT
Artikel Jurnal  Universitas Indonesia Library
cover
Abstrak :
Sistem Klasifikasi Dewey Decimal Classification ini merupakan salah satu sistem yang dikenal di kalangan pustakawan.Saking dikenalnya,hampir setiap pustakawan mengenal sistem ini minimal namanya dan bahkan mengetahui urutan kelasnya....
SEBUPUI
Artikel Jurnal  Universitas Indonesia Library
cover
Abstrak :
Call number bagaikan nama panggilan seseorang atau nomor punggung pemain bola.Kita kita lebih mengenal Si nomor 17 untuk Christian Ronaldo ,atau si nomor 7 untuk David Beckham.....
SEBUPUI
Artikel Jurnal  Universitas Indonesia Library
cover
Abstrak :
There are many information which can be processed in many emails. Clasisification is a way to organize the informations which are be in the emails.....
Artikel Jurnal  Universitas Indonesia Library
cover
Abstrak :
This research aims to examine a new meyhod inserted in the process of signal feature recognition, namely the objct pre-analysis feature manipulation....
Artikel Jurnal  Universitas Indonesia Library
cover
Abstrak :
Land cover information is vital for supporting decision concerning the management of the environment and for understanding the causes and trnds of human and natural processess on the earth surface....
Artikel Jurnal  Universitas Indonesia Library
cover
Abstrak :
Species diversity is one of the most important indeces used for evaluating the sustainability of forest communities. This study aims to characterize the forest communities and to identify and compare the plant species diversity in the study area....
Artikel Jurnal  Universitas Indonesia Library
cover
Arsyian Rizki Pratama
Abstrak :
Telur ayam kampung atau telur ayam buras adalah telur ayam umum dikonsumsi masyarakat Indonesia sebagai makanan biasa atau juga sebagai obat. Pengklasifikasian kualitas telur ayam kampung. Dilakukan untuk dapat membedakan telur yang layak konsumsi dan tidak layak konsumsi. Beberapa penelitian serupa menggunakan Arduino dan sensor photodioda untuk melakukan klasifikasi, selain itu juga ada beberapa penelitian yang menggunakan machine learning untuk membedakan jenis telur. Dari penelitian yang telah di lakukan dilihat bahwa akurasi masih kecil, dan dirasa masih bisa di ditingkatkan. Dalam penelitian ini dibuat sistem klasifikasi kualitas telur ayam kampung dengan menggunakan algoritma you only look once (YOLO) versi 4. Data set yang digunakan pada penelitian ini berupa data set dari 4 kategori kondisi telur atau 4 class antara lain telur baik, busuk, fertil, dan telur retak. Data set diakuisisi dengan disinari dengan lampu led yang diberikan tegangan 12V pada kotak akuisisi, dan citra ditangkap dengan webcam Logitech c270. Dari pelatihan data set citra telur ayam kampung dihasilkan akurasi sebesar 96.76% di pengujian pada validation set dan sebesar 95.26% pada test set. Dari kasus pendeteksian kualitas telur ayam kampung dengan deep learning berbasis algoritma YOLOv4 ini memungkinkan adanya pengembangan lebih lanjut. ...... Local breed chicken eggs or local breed chicken eggs are chicken eggs that are commonly consumed by Indonesian people as ordinary food or also as medicine. Classification of local breed chicken egg quality. This is done to be able to distinguish eggs that are suitable for consumption and not suitable for consumption. Several similar studies used Arduino and photodiode sensors to carry out classification, besides that there were also several studies using machine learning to distinguish types of eggs. From the research that has been done, the accuracy is still small, and it is felt that it can still be improved. In this research, local breed chicken egg quality classification system was created using you only look once (YOLO) version 4 algorithm. The dataset used in this study was a data set of 4 categories of egg conditions or 4 classes including good eggs, rotten, fertile, and cracked eggs. The dataset was acquired by irradiating it with a led lamp supplied with a 12V voltage on the acquisition box, and the image was captured with a Logitech c270 webcam. From the local breed chicken egg image dataset training, an accuracy of 96.76% was obtained in the validation set test and 95.26% in the test set. From the case of detecting local breed chicken egg quality with deep learning based on the YOLOv4 algorithm, it allows for further development.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hunter, Eric J.
Burlington : Ashgate , 2002
025.42 HUN c
Buku Teks  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>