Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 5 dokumen yang sesuai dengan query
cover
Awaludin Martin
"Penelitian ini terdiri atas dua bagian penelitian, yaitu proses produksi karbon aktif berbahan dasar batubara sub bituminus Indonesia yang berasal dari Kalimantan Timur dan Riau dan adsorpsi isotermal karbon dioksida dan metana pada karbon aktif hasil penelitian bagian pertama. Karbon aktif diproduksi di laboratorium dengan menggunakan aktivasi fisika dimana gas CO2 digunakan sebagai activating agent pada temperatur aktivasi sampai dengan 950oC. Karbon aktif yang diproduksi selanjutnya dilakukan pengujian untuk mengetahui kualitas karbon aktif berupa angka Iodine dan luas permukaan. Dari penelitian yang dilakukan didapat bahwa karbon aktif berbahan dasar batubara Kalimantan Timur lebih baik dibanding dengan karbon aktif berbahan dasar batubara Riau. Hal tersebut dikarenakan oleh perbandingan unsur oksigen dan karbon pada batubara Kalimantan Timur lebih tinggi daripada batubara Riau. Angka Iodine maksimum pada karbon aktif berbahan dasar batubara Riau adalah 589,1 ml/g, sementara karbon aktif berbahan dasar batubara Kalimantan sampai dengan 879 ml/g.
Adsorpsi isotermal karbon dioksida dan metana pada karbon aktif Kalimantan Timur dan Riau serta satu jenis karbon aktif komersial dilakukan di laboratorium Teknik Pendingin dan Pengkondisian Udara Teknik Mesin FTUI. Adsorpsi isotermal dilakukan dengan menggunakan metode volumetrik dengan variasi temperatur isotermal 27, 35, 45, dan 65oC serta tekanan sampai dengan 3,5 MPa. Data adsorpsi isotermal yang didapat adalah data kapasitas penyerapan karbon dioksida dan metana pada karbon aktif pada variasi tekanan dan temperatur isotermal yang kemudian di plot dalam grafik hubungan tekanan dan kapasitas penyerapan. Dari hasil penelitian didapat bahwa kapasitas penyerapan karbon aktif komersial lebih baik dibandingkan dengan karbon aktif Kalimantan Timur dan Riau, hal tersebut dikarenakan luas permukaan dan volume pori karbon aktif komersial lebih tinggi dibanding yang lain. Kapasitas penyerapan CO2 pada karbon aktif komersial (CB) maksimum adalah 0,349 kg/kg pada temperatur 27oC dan tekanan 3384,69 kPa, sementara untuk karbon aktif Kalimantan Timur (KT) adalah 0,227 kg/kg pada temperatur 27oC dan tekanan 3469,27 kPa dan untuk karbon aktif Riau (RU) adalah 0,115 kg/kg pada temperatur 27oC dan tekanan 3418,87 kPa. Kapasitas penyerapan CH4 pada karbon aktif CB maksimum adalah 0,0589 kg/kg pada temperatur isotermal 27oC dan tekanan 3457,2 kPa, sementara untuk karbon aktif KT adalah 0,0532 kg/kg pada temperatur 27oC dan tekanan 3495,75 kPa dan untuk karbon aktif RU adalah 0,0189 kg/kg pada temperatur 27oC dan tekanan 3439,96 kPa.
Data adsorpsi isotermal yang didapat selanjutnya dikorelasi dengan menggunakan persamaan model Langmuir, Toth, dan Dubinin-Astakhov. Dari hasil perhitungan korelasi persamaan didapat bahwa persamaan model Toth adalah persamaan model yang paling akurat, dimana nilai simpangan antara data eksperimen adsorpsi isotermal CO2 dengan korelasi persamaan model Toth adalah 3,886% (CB), 3,008% (KT) dan 2,96% (RU). Sementara untuk adsorpsi isotermal CH4 adalah 2,86% (CB), 2,817 (KT), dan 5,257% (RU). Dikarenakan persamaan model Toth adalah persamaan yang paling akurat, maka perhitungan panas adsorpsi isosterik dan adsorpsi isosterik dilakukan dengan menyelesaikan persamaan model Toth tersebut. Data panas adsorpsi dibutuhkan untuk mengetahui berapa besar panas yang dilepaskan ketika adsorben menyerap karbon dioksida dan metana, sementara data adsorpsi isosterik diperlukan untuk dapat memprediksi berapa besar tekanan yang dibutuhkan dan temperatur isotermal yang harus dikondisikan untuk menyerap gas karbon dioksida dan metana dalam jumlah yang telah diketahui.

This research is consists of two main topics, first is production of activated carbon from Indonesian sub bituminous coal as raw material. The raw material is from East of Kalimantan and Riau sub bituminous coal. And secondly is adsorption isotherms carbon dioxide and methane on activated carbon. Activated carbon was produced in laboratory with physical activation method by carbon dioxide as activating agent up to 950oC. Iodine number and surface area was used to characterize of activated carbon quality. From the research, the quality of activated carbon from East of Kalimantan sub bituminous coal is better than Riau sub bituminous coal. It caused the ratio of oxygen and carbon in from East of Kalimantan sub bituminous coal is higher than Riau sub bituminous coal. The maximum iodine number of activated carbon from Riau sub bituminous coal is 589.1 ml/g and activated carbon from East of Kalimantan sub bituminous coal is 879 ml/g.
Adsorption isotherms carbon dioxide and methane on activated carbon from East of Kalimantan and Riau sub bituminous coal and commercial activated carbon was done in Refrigeration and Air Conditioning Laboratory, Mechanical Engineering Department, Faculty of Engineering, University of Indonesia. Adsorption isotherms were done by volumetric method with variation of temperature is 27, 35, 45, and 65oC and the pressure of adsorption up to 3.5 MPa. Data of adsorption isotherm is adsorption capacity of carbon dioxide and methane on activated carbon with pressure and isotherms temperature variation. Data of adsorption capacity was plotted on pressure and adsorption capacity. From the research, adsorption capacity of commercial activated carbon is higher than Activated carbon from East of Kalimantan and Riau coal. It is caused; the surface area and pore volume of commercial activated carbon is higher than East of Kalimantan and Riau coal. The maximum adsorption capacity of CO2 on commercial activated carbon is 0.349 kg/kg at isotherm temperature 27oC and the pressure is 3384.69 kPa. For activated carbon from East of Kalimantan, the maximum adsorption capacity of CO2 is 0.227 kg/kg at isotherm temperature 27oC and the pressure is 3469.27 kPa. For activated carbon from Riau, the maximum adsorption capacity of CO2 is 0.115 kg/kg at isotherm temperature 27oC and the pressure is 3418.87 kPa. The maximum adsorption capacity of CH4 on commercial activated carbon is 0.0589 kg/kg at isotherm temperature 27oC and the pressure is 3457.2 kPa. For activated carbon from East of Kalimantan, the maximum adsorption capacity of CH4 is 0.0532 kg/kg at isotherm temperature 27oC and the pressure is 3495.75 kPa. For activated carbon from Riau, the maximum adsorption capacity of CH4 is 0.0189 kg/kg at isotherm temperature 27oC and the pressure is 3439.96 kPa.
Adsorption isotherms data was correlated with Langmuir, Toth, and Dubinin- Astakhov equation models. From the calculation, Toth equation model more accurate than Langmuir and Dubinin-Astakhov. The deviation between experiment data of adsorption isotherm CO2 and calculation by using Toth equation model is 3.886% for commercial activated carbon data, 3.008% for East of Kalimantan activated carbon, and 2.96% for Riau activated carbon. The deviation between experiment data of adsorption isotherm CH4 and calculation by using Toth equation model is 2.86% for commercial activated carbon data, 2.817% for East of Kalimantan activated carbon, and 5.257% for Riau activated carbon.Isosteric heat of adsorption and adsorption isostere was calculated by using Toth equation model, caused the Toth equation model more accurate than Langmuir and Dubinin-Astakhov models. Isosteric heat of adsorption is needed to know the amount of heat of adsorption released when activated carbon adsorpt the adsorbate. The adsorption isostere data is needed to predict the pressure and isotherm temperature for adsorp the amount of adsorbate.
"
Depok: Fakultas Teknik Universitas Indonesia, 2010
D998
UI - Disertasi Open  Universitas Indonesia Library
cover
Gabriela Putri Natalia
"ABSTRAK
Limbah kulit aren (Arenga pinnata) berpotensi digunakan sebagai bioadsorben dari pembuatan karbon berukuran 75 mikron dan 150 mikron. Karbon tersebut diaktivasi dengan pemberian KOH 1 M dan H3PO4 sebesar 15%. Masing ? masing karbon aktif akan dilapisi dengan kitosan sebesar 0,5%. Bioadsorben yang sudah siap akan digunakan untuk adsorpsi biogas. Biogas diperoleh dari proses digesting anaerob Palm Oil Mill Effluent (POME) atau limbah cair kelapa sawit. Biogas awal mengandung CH4 sebanyak 67% dan CO2 sebanyak 6,496%. Biogas ini kemudian dilalui melewati kolom adsorpsi yang memiliki ukuran tinggi 15 cm dan berdiameter 0,8 cm yang berisi bioadsorben. Pengambilan sampel dilakukan setelah 3 menit dan kemudian dianalisis menggunakan Gas Chromatography (GC). Sedangkan, profil kapasitas adsorpsi pada biomasa dapat diuji menggunakan BET dan FTIR. Setelah melewati tahap pengujian, didapati adsorben terbaik yang berupa bioadsorben berukuran 75 mikron yang diaktivasi dengan menggunakan H3PO4 15% dan dilapisi dengan kitosan 0,5%. Performa bioadsorben menunjukkan bahwa limbah kulit aren berpotensi digunakan untuk adsorpsi karbondioksida hingga 2,96% sehingga bisa meningkatkan kandungan gas metana menjadi 82,77%.

ABSTRACT
Sugar palm (Arenga pinnata) shell waste can be used as bioadsorbent from carbonization in 75 micron and 150 micron. Those carbon are activated with 1 M of KOH and 15% of H3PO4. Each of active carbon will be coated with 0.5% of chitosan. Bioadsorbent will be used as biogas adsorbent. Biogas is generated from anaerob digesting Palm Oil Mill Effluent (POME). The initial biogas contains 67% of CH4 and 6.496% of CO2. Then, the biogas is passed through 15 cm of height and 0.8 cm of diameter of adsorption column with bioadsorbent inside. The datas are taken after 3 minutes of running and are analysed using Gas Chromatography (GC). Meanwhile, the adsorption capacity of the biomass profile can be analysed using BET and FTIR. After sampling, it is found that the best adsorbent is 15% of H3PO4 activated carbon in 75 micron of size coated by 0.5% of chitosan. Performance of bioadsorbent shows that the sugar palm shell waste could be used for adsorption that reduces Carbondioxide until 2.96% and improve Methane content until 82.77%."
2016
S63292
UI - Skripsi Membership  Universitas Indonesia Library
cover
Finny Chrisnardy
"ABSTRACT
Karbon mesopori berhasil disintesis menggunakan metode soft template dengan Pluronic F-127 sebagai agen pembentuk struktur; phloroglucinol dan formaldehida sebagai prekursor karbon. Karbon mesopori hasil sintesis dikarakterisasi dengan XRD, BET, SEM-EDX, dan FTIR. Aktifasi karbon mesopori hasil sintesis dilakukan dengan menggunakan HCl 1M dengan tujuan untuk meningkatkan loading trietilentetraamina TETA sebagai senyawa bergugus amina dalam karbon mesopori. Karbon mesopori dan karbon mesopori teraktifasi dimodifikasi menggunakan TETA dengan variasi konsentrasi di bawah 50 wt. Karbon mesopori termodifikasi kemudian dikarakterisasi dengan SEM-EDX dan FTIR. Uji adsorpsi CO2 dengan adsorben karbon mesopori, karbon mesopori teraktifasi, karbon mesopori termodifikasi TETA, dan karbon mesopori teraktifasi termodifikasi TETA dengan variasi waktu pengaliran CO2 selama 5, 10, 15, 20, 25, dan 30 menit dengan waktu kontak 15 menit dan laju alir gas CO2 20 mL/menit. Sebagai perbandingan, uji adsorpsi dilakukan juga dengan karbon aktif komersial. Uji adsorpsi juga dilakukan pada laju alir 60 mL/menit selama 2,5, 5, 7,5, 10, 12,5, dan 15 menit untuk melihat pengaruh laju alir terhadap kemampuan adsorpsi CO2. Gas CO2 yang teradsorpsi dilkuantisasi dengan metode titrasi asam basa. Berdasarkan uji adsorpsi CO2, aktifasi asam berhasil meningkatkan loading TETA ke dalam karbon mesopori sehingga meningkatkan kemampuan adsorpsi CO 2.

ABSTRACT
Mesoporous carbon was successfully synthesized using soft templated method with Pluronic F 127 as structure directing agent phloroglucinol and formaldehyde as carbon precursor. The as synthesized mesoporous carbon was characterized using XRD, BET, SEM EDX, and FTIR. Activation of as synthesized mesoporous carbon was done using HCl 1 M to increase triethylenetetraamine TETA as amine group compound loading within mesoporous carbon. Mesoporous carbon and activated mesoporous carbon was modified using TETA with concentration varation under 50 wt. The modified mesoporous carbon was then characterized with SEM EDX and FTIR. Adsorption test was performed using adsorbent mesoporous carbon, activated mesoporous carbon, mesoporous carbon modified by TETA, and activated mesoporous carbon modified by TETA with flow time CO2 gas variation 5, 10, 15, 20, 25, and 30 minutes, contact time 15 minutes, and flow rate 20 mL minute. As comparison, adsorption test was performed with activated carbon. Adsorption test was also performed with flow rate 60 mL minute for 2,5, 5, 7,5, 10, 12,5, and 15 minutes to observe the effect of flow rate on adsorption ability of CO2. Adsorbed CO2 gases was quantified with acid base titration method. From CO2 adsorption test, acid activation was successfully increased TETA loading within mesoporous carbon which increased CO2 adsorption ability."
2016
S66243
UI - Skripsi Membership  Universitas Indonesia Library
cover
Vania Juliani Utami
"ABSTRAK
Kapal laut merupakan moda transportasi yang digunakan untuk memfasilitasi 90% perdagangan internasional. Hal tersebut membuat kapal laut berpartisipasi dalam membuang sekitar 120 juta ton gas CO2 ke atmosfer setiap tahunnya (Hydros Foundation). Dalam rangka menanggulangi dan mencegah dampak yang lebih buruk dari terperangkapnya gas CO2 di udara, International Maritime Organization menetapkan peraturan yang menuntut indutri perkapalan untuk mengurangi emisi CO2 di masing-masing kapalnya sebesar 40% di tahun 2030 mendatang. Dalam memenuhi tuntutan ini industri dapat menerapkan teknologi post-combustion adsorption. Teknologi adsorpsi tentunya membutuhkan adsorben yang cocok sesuai dengan fungsi yang diharapkan. Pada penelitian ini fungsi yang diharapkan yaitu menangkap gas CO2 pada gas buang kapal, dengan pengaruh adanya gas N2, mengingat gas N2 mempunyai presentase besar pada gas buang kapal. Salah satu adsorben yang memiliki potensi untuk adsorpsi gas CO2 di gas buang kapal adalah MIL-101 (Cr). Material ini memiliki luas permukaan yang besar, dan diiringi dengan kestabilan kimia dan kestabilan termal yang baik. Pada penelitian ini dilakukan sintesis material MIL-101 (Cr) secara hydrothermal, diikuti dengan proses karakterisasi luas permukaan melalui adsorpsi/desorpsi N2, fourier transform infrared sprectoscopy (FTIR), x-ray diffraction (XRD), thermogravimetric analysis (TGA), dan scanning electron microscopy (SEM). Setelah sintesis dan karakterisasi, dilakukan pengujian kapasitas adsorpsi secara volumetrik, kemudian perhitungan selektivitas menggunakan metode ideal adsorbed solution theory (IAST). Berdasarkan penelitian ini didapatkan hasil selektivitas CO2/N2 sebesar 30,1 untuk suhu 27C dan 9,9 untuk suhu 25C.

ABSTRACT
Shipping, or sea freight, is still the most crucial mode of transportation, facilitating 90% of the International trade. With that high percentage, shipping also contributes in accumulating more than 120 million tons of carbon dioxide in the atmosphere each year (Hydros Foundation, 2015). In order to prevent and overcome any worse impact from the heat-trapping gas, International Maritime Organization (IMO) set new rules that require the shipping industry to reduce their ships CO2 emission by 40% in the upcoming 2030. To meet this requirement, post-combustion adsorption technology is an interesting option since this method does not force owner to replace their whole ship system but instead just add some additional equipment. Adsorption method required a suitable adsorbent for each specific purpose. In this research the adsorbent is expected to be able to capture CO2 gasses from a ship exhaust, while considering the effect of N2 gasses that mainly dominate the flue gasses. MIL-101 Cr, a type of metal-organic framework, is one potential adsorbent for the required function. This material has a large surface area, along with a great chemical and thermal stability. In this research writer conducted a hydrothermal synthesize of MIL-101 Cr, followed by material characterization: surface area analysis using N2 adsorption/desorption, fourier transform infrared spectroscopy (FTIR), x-ray diffraction (XRD), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). After the synthesize and characterization, adsorption measurement is conducted using volumetric method and then the selectivity is calculated using ideal adsorbed solution theory (IAST) method. In this research the CO2/N2 selectivity using MIL-101 Cr reached up to 30,1 in 27C and 9,9 in 25C."
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Shavira Marsya Arianti
"Fenomena pemanasan global terjadi akibat penumpukan gas rumah kaca di atmosfer. Diperlukan solusi yang dapat diproduksi massal dengan mudah dan murah untuk membantu mengurangi jumlah gas rumahkaca di udara. Dari keseluruhan gas rumahkaca, lebih dari 90 persen penyusunnya adalah karbondioksida. Teknologi Carbon Capture and Storage (CCS) telah memungkinkan penangkapan karbondioksida dari udara dengan adsorpsi/desorpsi untuk kemudian disimpan dan digunakan untuk berbagai kebutuhan. Jenis material Metal Organic Frameworks (MOF) kian marak difungsikan sebagai adsorben untuk fungsi adsorpsi karena luas permukaan yang besar dan volume pori yang besar. Subjenis MOF dengan ligan biomolekul atau yang biasa disebut bio-MOF kemudian dikembangkan untuk pemenuhan kebutuhan MOF terutama pada sektor medis. Studi ini dikhususkan untuk meningkatkan afinitas material bio-MOF kromium suksinat sebagai adsorben pada adsorpsi gas karbondioksida. Material dibentuk dari sintesis hidrothermal dengan bahan logam kromium(III)nitrat, ligan asam suksinat, dan dissodium sulfat. Nilai pH larutan dinaikkan dengan penambahan NaOH. Material kemudian dikarakterisasi dengan metode FTIR, BET, and SEM. Dari studi ini dihasilkan bio-MOF kromium suksinat dengan luas permukaan 207,58 m3/g dan volum pori sebesar 0,88 cm3/g. Hasil uji adsorpsi maksimum tercapai pada suhu 30 C di tekanan 15 bar dengan nilai 6,4 g/g.

Global warming that causes climate change is caused by the higher concentration of greenhouse gases in atmosphere. We need a solution that can be cheaply and efficiently mass produced to reduce greenhouse gases. More than 90% of greenhouse gases consists of carbondioxide. Carbon Capture and Storage (CCS) technology has allowed us to not only capture carbondioxide from air but also store the captured gas for later uses. Metal Organic Frameworks (MOF) has now been developed as adsorbent because of the large surface area and pore volume. A subtype of MOF synthesized with biomolecule ligands, mainly referred to as bio-MOFs is now being developed to fulfill the needs of MOF especially in the medical field. This study is focused in increasing the affinity of Bio-MOF chromium succinates as adsorbent for CO2 adsorption purpose. Chromium succinates was prepared by hydrothermal reaction of chromium(III)nitrate, succinic acid, and dissodium sulphate. The pH level of the obtained solution was then increased by gradually adding NaOH. The result was then characterized by FT-IR, BET, and SEM. The resulted chromium succinate has the surface area of 207,85 m3/g and pore volume of 0,88cm3/g. The maximum adsorption level is achieved at 30 C temperature at 15 bar pressure valued 6,4g/g."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library