Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 13 dokumen yang sesuai dengan query
cover
Lisa
Abstrak :
Salah satu alternatif untuk memproduksi hidrogen mumi adalah dengan cara dekomposisi katalitik metana menjadi hidrogen dan nanokarbon berkualitas tinggi. Karbon yang dihasilkan dapat berupa nanotubes atau nanofibers/filaments yang memiliki sifat yang unggul untuk aplikasi sebagai hydrogen storage, komposit, field-emission displays, microscope tips, dan terabit memory, dan lain sebagainya yang memiliki nilai tambah yang tinggi. Beberapa masalah dalam pengembangan proses perengkahan metana secara katalitik adalah yield karbon yang masih rendah dan terjadinya deaktifasi katalis yang disebabkan oleh pembentukan karbon lersebut. Pada penelitian ini, katalis dengan loading nikel tinggi dipreparasi dengan dua metode: Ni-Cu/Al dengan kopresipitasi dan Ni-Cu!Al-Si dengan kopresipitasi-sol gel. Variasi jumlah presipitau NA OH, dan loading Al-Si menyebabkan kekuatan asam katalis yang berbeda, yang berarti kekuatan aktivasi yang berbeda dari katalis tersebut. Katalis Ni-Cu/4Al dan Ni-Cu/11Al, dengan kekuatan asam 2.6 umol/gr kat dan 1.6 umol/gr kat, paling cepat terdeaktivasi masing-masing sclama 140 dan 160 menit. Kedua katalis lersebut memiliki yield karbon yang paling sedikit O.745gr C/gr kat dan l.002gr Cigr kat dan yield hidrogen 0.83 mol/gr kat dan 1.39 mol/gr kat secara berurulan. Katalis Ni-Cu/15 Al, dengan kekuatan asam 6.9|1mol/gr kat, aktif selama 1460 menit dcngan yield karbon 4.976gr Cfgr kat dan yield liidrogen 79.16 mol/'gr kat. Katalis Ni-Cu/22Al merupakan katalis paling efektif dengan kekuatan asain 7.5 pmol/gr kat menghasilkan yield karbon 3.324gr Cfgw: kat dan yield hidrogen 19.91 mol./gr kat hanya dalam waktu 635 menit. Katalis Ni-Cu/Al-Si menunjukkan fenomena yang kurang lebih sama. Semua sampel katalis menunjukkan selektivitas hidrogen berkisar antara 90-98% dan seleklivitas karbon antara 1-8%.
Depok: Fakultas Teknik Universitas Indonesia, 2005
S49476
UI - Skripsi Membership  Universitas Indonesia Library
cover
Amsterdam: Elsevier, 1964
547 ROD
Buku Teks  Universitas Indonesia Library
cover
cover
cover
Boston: D. Reidel, 1983
546.681 CAT
Buku Teks  Universitas Indonesia Library
cover
Inagaki, Michio
Abstrak :
Materials science and engineering of carbon: fundamentals provides a comprehensive introduction to carbon, the fourth most abundant element in the universe. The contents are organized into two main parts. Following a brief introduction on the history of carbon materials, Part 1 focuses on the fundamental science on the preparation and characterization of various carbon materials, and Part 2 concentrates on their engineering and applications, including hot areas like energy storage and environmental remediation.
Waltham, MA: Butterworth-Heinemann, 2014
e20427209
eBooks  Universitas Indonesia Library
cover
Daffa Dewa Saputra
Abstrak :
Perubahan iklim merupakan tantangan global yang mendesak, terutama ditandai oleh peningkatan emisi gas rumah kaca yang terus menerus, memerlukan tindakan segera untuk menjaga kelestarian lingkungan. Dalam beberapa tahun terakhir, produksi bioetanol global telah memberikan kontribusi signifikan terhadap emisi karbon dioksida global, dengan setiap liternya mengeluarkan sekitar 0,76 kg CO₂. Dengan latar belakang ini, PT X menunjukkan kepemimpinan yang proaktif dengan merencanakan pabrik bioetanol berbasis sagu dengan pendekatan karbon negatif, yang menyoroti pentingnya teknologi penangkapan karbon untuk memitigasi dampak lingkungan. Teknologi ini tidak hanya bertujuan untuk mengurangi emisi tetapi juga memurnikan karbon dioksida hingga tingkat kemurnian tara pangan sebesar 99,9%w. Studi kelayakan tersebut mencakup kapasitas bioetanol mulai dari 500 kLPA hingga 500.000 kLPA. Kajian ini mengevaluasi secara komprehensif Aspek Teknis dan Dampak Lingkungan dari teknologi penangkapan karbon, dengan fokus khusus pada penangkapan karbon dioksida dari Gas Fermentasi dan Gas Buang dari boiler berbahan bakar biomassa. Pertimbangan teknis meliputi Kesesuaian Teknologi, Tingkat Kesiapan Teknologi, Tingkat Risiko Keselamatan, dan Konsumsi Energi, sedangkan parameter Dampak Lingkungan meliputi Potensi Pemanasan Global, Potensi Pengasaman, Potensi Eutrofikasi, Potensi Penipisan Ozon, Jejak Kelangkaan Air, Pembentukan Oksidasi Fotokimia, dan Ekotoksisitas. Dalam kategori Penangkapan Kaya Karbon Dioksida, Teknologi Praxair muncul sebagai pilihan optimal berdasarkan Aspek Dampak Teknis dan Lingkungan, sedangkan Penyerapan Berbasis Amina EFG+ Fluor lebih disukai dalam kategori Penangkapan Miskin Karbon Dioksida. Secara keseluruhan, penangkapan Gas Fermentasi terbukti lebih hemat energi dengan dampak lingkungan yang lebih rendah dibandingkan dengan penangkapan Gas Buang. Selain itu, kepatuhan terhadap etika teknik, profesionalisme, dan prioritas aspek Kesehatan, Keselamatan, dan Lingkungan (HSE) sangat penting untuk keberhasilan upaya teknik. ...... Climate change presents a pressing global challenge, marked by the relentless increase in greenhouse gas emissions, demanding immediate action to ensure environmental sustainability. In recent years, global bioethanol production has significantly contributed to the global carbon dioxide emissions, with each liter emitting approximately 0.76 kg of CO₂. Against this backdrop, PT X demonstrates proactive leadership by planning a sago-based bioethanol plant with a carbon-negative approach, highlighting the crucial need for carbon capture technology to mitigate environmental impacts. This technology not only aims to reduce emissions but also purify carbon dioxide to a food-grade purity level of 99.9%w. The feasibility study encompasses bioethanol capacities ranging from 500 kLPA to 500,000 kLPA. This study comprehensively evaluates the Technical and Environmental Impact Aspects of carbon capture technology, focusing specifically on capturing carbon dioxide from Fermentation Gas and Flue Gas from biomass-fueled boilers. Technical considerations include Technology Suitability, Technology Readiness Level, Safety Risk Level, and Energy Consumption, while Environmental Impact parameters include Global Warming Potential, Acidification Potential, Eutrophication Potential, Ozone Depletion Potential, Water Scarcity Footprint, Photochemical Oxidant Formation, and Ecotoxicity. In the Carbon Dioxide-Rich Capture category, Praxair Technology emerges as the optimal choice based on both Technical and Environmental Impact Aspects, while Fluor's EFG+ Amine-Based Absorption is preferred in the Carbon Dioxide-Poor Capture category. Overall, Fermentation Gas capture proves more energy-efficient with lower environmental impacts compared to Flue Gas capture. Additionally, adherence to engineering ethics, professionalism, and prioritization of Health, Safety, and Environment (HSE) aspects are crucial for successful engineering endeavors.
Jakarta: Fakultas Teknik Universitas Indonesia, 2024
PR-PDF
UI - Tugas Akhir  Universitas Indonesia Library
cover
Annisa Nursya`bani
Abstrak :
Gas alam merupakan bahan bakar bersih yang lebih ramah lingkungan dibandingkan dengan batubara dan minyak bumi. Salah satu teknologi yang dapat digunakan untuk menyimpan gas alam adalah adsorbed natural gas (ANG). ANG memanfaatkan kemampuan adsorpsi material adsorben seperti karbon aktif untuk menyimpan gas alam. Karbon aktif dibuat dengan menggunakan cangkang kelapa sawit melalui tahapan karbonisasi dan aktivasi. Karbonisasi dilakukan pada suhu 400 oC dan dilanjutkan dengan tahapan aktivasi untuk membuka pori. Aktivasi kimia dilakukan dengan larutan H3PO4, sementara aktivasi fisika dilakukan dengan menggunakan gas N2. Yield yang didapatkan pada penelitian ini adalah sebesar 27,56%. Untuk meningkatkan kemampuan adsorpsi, dilakukan juga impregnasi menggunakan MgO yang divariasikan pada konsentrasi 0,5% b/b, 1% b/b, dan 2% b/b. Karbon aktif dengan hasil terbaik adalah karbon aktif termodifikasi MgO 1% b/b dengan luas permukaan sebesar 1604,00 m2/g. Karbon aktif yang dihasilkan diuji kapasitasnya dalam menyimpan gas alam. Kapasitas adsorpsi gas alam terbesar didapatkan oleh karbon aktif termodifikasi MgO 1% b/b pada suhu 28 oC dan tekanan 9 bar yang mampu mencapai 0,027 kg/kg. ...... Natural gas is a cleaner fuel that is more environmentally friendly than coal and oil. One of the technologies that can be used to store natural gas is adsorbed natural gas (ANG). ANG utilizes the adsorption ability of adsorbent materials such as activated carbon to store natural gas. Activated carbon is made using palm shells through the stages of carbonization and activation. The carbonization was carried out at 400 oC and followed by an activation step to open the pores. Chemical activation was carried out with H3PO4 solution, while physical activation was carried out using N2 gas. Yield obtained from this experiment is 27.56%. To increase adsorption ability, impregnation was also carried out using MgO with variation of concentration of 0.5% w/w, 1% w/w, and 2% w/w. Activated carbon with the best results was activated carbon with 1% w/w MgO modification with a surface area of 1604.00 m2/g. The activated carbon produced then tested for its capacity to store natural gas. The largest natural gas adsorption capacity was obtained by activated carbon modified with 1% MgO w/w at temperature 28 oC and pressure 9 bar which was able to reach 0.027 kg/kg.
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Leonard Chandra
Abstrak :

Metode penyimpanan gas alam perlu dioptimalkan guna mencapai kapasitas adsorpsi dan desorpsi yang optimal namun tetap efektif dan aman. Salah satu teknologi yang menjanjikan untuk penyimpanan gas alam adalah Adsorbed Natural Gas (ANG). Teknologi ANG dapat dioptimalkan melalui pengembangan adsorben berbasis karbon aktif yang digunakan dalam silinder penyimpanan. Karbon aktif dapat diproduksi dari limbah cangkang kelapa sawit yang memiliki kandungan selulosa sebesar 29,7%, holoselulosa 47,7%, dan lignin 53,4%. Proses pembuatan karbon aktif dari limbah cangkang kelapa sawit melibatkan karbonisasi pada suhu 400 °C, diikuti oleh aktivasi menggunakan agen aktivator ZnCl2. Untuk meningkatkan luas permukaan karbon aktif, dilakukan aktivasi fisika tambahan pada suhu 850 °C selama 5 jam dengan aliran gas N2 sebesar 100 ml/menit. Karbon aktif yang dihasilkan kemudian dimodifikasi menggunakan bahan perekat termoplastik PVA dengan variasi konsentrasi 1% dan 2%. Karbon aktif dengan karakteristik terbaik adalah karbon aktif yang termodifikasi menggunakan PVA 2% dengan bilangan iodin sebesar 1393,74 mg/g dan luas permukaan spesifik (SBET) sebesar 1386,19 m2/g. Kapasitas adsorpsi gas metana oleh karbon aktif yang telah dimodifikasi dengan PVA 2% pada suhu 28 °C dan tekanan 9 bar mencapai 0,0573 kg/kg. ......The storage method of natural gas needs to be optimized to achieve optimal adsorption and desorption capacities while ensuring effectiveness and safety. One promising technology for natural gas storage is Adsorbed Natural Gas (ANG). ANG technology can be optimized through the development of carbon-based adsorbents used in storage cylinders. Activated carbon can be produced from waste palm kernel shells, which contain 29.7% cellulose, 47.7% hemicellulose, and 53.4% lignin. The production process of activated carbon from palm kernel shell waste involves carbonization at a temperature of 400 °C, followed by activation using ZnCl2 as the activating agent. To increase the surface area of the activated carbon, additional physical activation is performed at a temperature of 850 °C for 5 hours with a nitrogen gas flow rate of 100 ml/minute. The resulting activated carbon is then modified using a thermoplastic binder, PVA, with concentrations of 1%, and 2%. The best-performing activated carbon is the one modified with 2% PVA, exhibiting an iodine number of 1393.74 mg/g and a specific surface area (SBET) of 1386.19 m2/g. The methane adsorption capacity of the modified activated carbon with 2% PVA at a temperature of 28 °C and a pressure of 9 bar reaches 0.0573 kg/kg.

 

Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Tokyo: Kodansha, 1989
661.068 1 PRO
Buku Teks  Universitas Indonesia Library
<<   1 2   >>