Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 3 dokumen yang sesuai dengan query
cover
Asep Nugraha Ardiwinata
"ABSTRAK
Hingga saat ini penggunaan pestisida di lahan pertanian masih cukup tinggi antara Iain yang tertinggi adaiah jenis insektisida disusul kemudian oleh fungisida dan herbisida. Jenis insektisida yang umum digunakan adalah golongan karbamat, fosfat organik dan piretroid. Salah satu golongan karbamat adalah karbofuran yang umum digunakan di Iahan pertanaman padi untuk mengendalikan organisme pengganggu seperti wereng coklat dan penggerek batang. Karbofuran merupakan senyawa yang sangat toksik, namun mudah terhidroIisis. Berdasarkan hasil penelitian terdahulu diketahui bahwa residu insektisida karbofuran selain ditemukan di tanah sawah, tetapi juga ditemukan di air persawasan dan di dalam jaringan ikan. Hal ini akan menyebabkan antara Iain masuknya residu karbofuran ke aliran air (sungai)
dan selanjutnya akan dikonsumsi oleh hewan ternak maupun manusia.
Apabila residu insektisida ini terkonsumsi oleh manusia akan dapat mempengaruhi sistem endokrin (EDs - Endocrine -Disrupteds) yang berperan dalam proses sintesis, sekresi dan reproduksi.
Beberapa, hasil penelitian menunjukkan adanya residu karbofuran di tanah_ beras dan air. Sudarmadji et al. (1986) melaporkan bahwa aplikasi insektisida karbofuran dengan dosis anjuran dapat meninggalkan residu di tanah dengan kisaran konsenirasi 0,42-0,53 ppm. Selanjutnya hasil penelitian Samudra et al. (1989) melaporkan bahwa aplikasi karbofuran sebanyak 3 kali dengan dosis 0,60 kg/ha dapat meninggalkan residu di tanah dengan kisaran konsentrasi 0,0062-0,0216 ppm. Residu karbofuran tersebut hanya ditemukan pada saat tanaman berumur 29 hst (hari setelah tanam)
dan tidak terdeteksi lagi pada saat panen padi. Hasil survey di sentra produksi padi di Jawa Barat dan Jawa Timur menunjukkan adanya residu insektisida karbofuran ditemukan di dalam tanah Sawah dengan kisaran konsentrasi 0,0008-0,0563 ppm (Ardiwinafa et al., 1999; Harsanti et al., 1999). Ardiwinata et aL (1996) melaporkan penemuan residu karbofuran di dalam beras yang berasal dad beberapa pasar di DKI Jakarta. Konsentrasi residu yang ditemukan berkisar 0,06 - 0,16 ppm. Batas maksimum residu karbofuran di dalam beras sebesar 0,20 ppm. Varca dan Tejada (1998)
melaporkan bahwa residu insektisida yang umum ditemukan pada jaringan tubuh ikan Nile tilapia (Oreochmmis niloticus) adalah residu insektisida karbofuran dengan konsentrasi 10,0-17,0 ppb. LC50 karbofuran pada ikan sebesar 0,17 ppm (kategori C = LC50 < 0,5 ppm; termasuk sangat toksik).
Teknologi penanggulangan residu insektisida di lingkungan terutama di lahan pertanian sampai saat ini belum ada. Penelitian ini sangat diperlukan untuk mendukung pembanguan pertanian yang berkeianjutan dan ramah lingkungan. Teknologi dalam mengendalikan dampak negatif tersebut beraneka ragam, mulai dari insinerasi, pemadatan sampai ke penyimpanan (containment) dan bioremediasi (Wisjnuprapto, 1996). Penggunaan karbon aktif akan memberi harapan baik untuk mengatasi pencemaran di tanah oleh pencemar organik atau anorganik. Karbon aktif dapat menyerap karbofuran di dalam air minum sebanyak 99,9% dari konsentrasi mula-mula sebesar 2250 mglL (Cunningham et al., 1995).
Bahan baku karbon aktif yang umum digunakan adalah tempurung kelapa. Tempurung kelapa banyak dijumpai dan mudah didapat di pasar tradisional. Sebagian besar tempurung kelapa biasanya dibuang begitu saja dan sebagian lagi digunakan untuk arang pembakar. Bahan baku Iainnya yang potensial adalah sekam padi. Sekam padi merupakan bagian terluar dari butir padi yang kaya zat arang, adalah hasil sampingan yang terbesar dari proses penggilingan padi. Dalam proses penggilingan, akan dihasiikan sekam padi sebanyak 18-35% (Houston, 1972). Menurut Tangenjaya (1991) bahwa persentase sekam dari gabah bervariasi, tergantung varietas, berkisar antara 16,3-26,0%.. Di Indonesia, terdapat usaha penggilingan padi sekitar 60.000 unit, sekitar 700 unit di antaranya memiliki kapasitas sedang dan besar (Setyono et al., 2000). Dengan produksi beras sebesar 29 juta ton/tahun diperkilakan akan dihasilkan lebih dari 11,5 juta ton sekam/tahun.
Hampir semua sekam yang terdapat di negara-negara ASEAN, dibakar atau terbuang begiiu aja. Kandungan seluiosa dan hemiselulosa yang mencapai 40% mémbuat ?kam berpotensi menjadi bahan baku I-carbon aktif. Di Indonesia, sekam padi umumnya digunakan untuk alas kandang pada peternakan ayam.
Karbon aktif dihasiikan melalui proses pirolisis dan bahan-bahan yang mengandung karbon, seperti tempurung kelapa dan sekam padi yang diikuti dengan tahap pengaktifan dari karbon yang dihasi|kan. Aktivasi adalah suatu proses menghilangkan ter yang masih tertinggal pada pori karbon aktif dengan penambahan suatu bahan pelarut kimia dan pemanasan pada suhu 800-1000°C, sehingga luas permukaan pon menjadi Iebih besar (Manocha, 2003 dan Darmstadt, 2004).
Pemilihan bahan pengerap residu insektisida dilakukan terhadap 15 jenis bahan yang diduga memiliki kemampuan erap yang tinggi. Bahan tersebut adalah karbon tampurung kelapa, karbon aktif tempurung kelapa, arang kayu (sate), karbon aktif kayu, karbon aktif bambu, ampas teh, karbon sekam padi, karbon aktif sekam padi, pupuk organik (kotoran hewan), kompos (tanaman), abu gosok, bokashi (campuran pupuk organik dan kompos), Fly ash, zeolit dan bentonit. Semua bahan tersebut diuji kemampuan daya erap terhadap Iod (lmamkhasani et af., 1994).
Karakterisasi karbon aktif tempurung kelapa dan sekam padi meliputi:
(a) penentuan luas permukaan, (b) penentuan bobot jenis, (c) penentuan bilangan iod, (d) kadar air, () pH (f) penentuan kadar zat mudah menguap, (g) kadar abu dan (h) penentuan kadar karbon terikat (lmamkhasani et al., 1994; Kadirvelu et al., 2000).
Dalam penelitian ini digunakan dua jenis tanah sawah, Inseptisol berasal dari daerah Karawang {pH 5-6, liat sedang 1:1 (60-70%)} dan Ultisol berasai dari daerah Jasinga {pH 4-5, Iiat rendah (<30-40%)}_ Karakterisasi
tanah meliputi pengukuran sifat fisik dan kimia tanah yaitu: tekstur tanah, pH tanah, bahan organik tanah, kandungan fosfor & kalium, nilai tukar kation (Ca, Mg, K, Na, KTK-kapasitas tukar kation dan KB-kejenuhan basa), pengukuran AI3+ dan H+(Hitsuda, 1987).
Kandungan heteroatom seperti oksigen, hidrogen, klor, sulfur, karbonil, hidroksil fenoiat, anhidrida, Iakton dan iaktal pada permukaan karbon aktif diidentiiikasi dengan alat FTIR Bio-Rad FTS 3000 spectrometer Excalibur series, pada kisaran panjang gelombang 4000-400 cm-1 dan resolusi 2 cm-1.
Bubuk kalium bromida digunakan sebagai matriks sampel dan bahan referensi (rasio sampel dan KBr adalah 5 : 100). Spektrum senyawa referensi didapat dari campuran sampel dengan bubuk KBr. Semua sampel sebelumnya dikeringkan terlebih dahulu pada suhu 110°C dengan vakum hingga didapat bobot tetap (Robert et al., 2000).
Penetapan kapasitas dan daya erap (sorpsi) karbon aktif terhadap insektisida karbofuran di dalam tanah dilakukan di Iaboratorium dengan empat belas kombinasi tanah dan dosis karbon aktif Kapasitas dan daya erap dan karbon aktif ditetapkan dengan model persamaan isoterm Langmuir (Evangeiou, 1998).
Untuk mengetahui pengaruh penggunaan karbon aktif terhadap tingkat kandungan residu karbofuran di tanah, air dan tanaman padi dilakukan penelitian di rumah. kaca dengan menggunakan rancangan acak lengkap (RAL) faktorial dengan 3 (tiga) faktor. Faktor pertama adalah jenis tanah (lnseptisol-Karawang/af dan Uitisoi-Jasinga/ag), faktor kedua adalah jenis karbon aktif (karbon aktif iempurung kelapa-KATKlb¢ dan karbon aktif sekam padi-KASPlb2) , dan faktor ketiga adalah dosis karbon aktif (0 ppmlcf, 250 ppm/cg; 500 ppm/cg; 1000 ppmlc4). Varietas padi yang digunakan adalah IR 64- Ukuran pot adalah tin i 40 cm, dan alas 30 Tiap poi diisi 10 kg contoh tanah kering udara dengan ukuran butir tanah yang Iewat saringan 2 mm. Pengamatan dilakukan pada seiang waktu 0, 5, 25, 45, 65, 85, 100 dan 140 hari inkubasi. Masing-masing perlakuan diulang sebanyak 4 kali. Untuk mengetahui perbedaan nyata antara perlakuan digunakan ANOVA (Anaiysis of Variance). Kalkulasi ANOVA menggunakan prosedur GLM (general linear model) dan SAS (Statistical Analysis System) versi 8.0 (SAS Institute, 1991).
Ungkat ketelitian dan kesalahan secara statistik yang digunakan dalam penelitian ini adalah pada P S 0,05 (Wade et al., 1998).
Anaiisis residu karbofuran menggunakan metode baku dari Komisi Pestisida (1997) dengan menggunakan aiat kromatografi gas Shimadzu GC-
4CM-PFE yang dilengkapi detektor Electron Capture Detector (ECD) dengan kondisi alat sebagai berikut: isi kolom DC 200 5%. CW (AW), 60-80 mesh, diameter dalam kolom 0,3 cm dan panjang 150 cm, suhu injektor dan detektor 230°C, suhu kolom 220°C, Iaju gas nitrogen 40 mllmenit, sensitivitas 102 MQ, kisaran 4 x 0,01 V, pulsa 1,25. Waktu retensi karbofuran dan 3-
hidroksi karbofuran dengan kondisi tersebut adalah 4,5 menit dan 7,7 menit_
Pada uji fortifikasi, nilai recovery karbofuran dengan metode di atas berkisar antara 92-98%. Batas deteksi minimal alat dengan kondisi tersebut adalah 0,001 ppm.
lsolat bakten diambil dari contoh tanah percobaan di rumah kaca yang terdiri tanah Karawang dan Jasinga pada setiap interval waktu pengamatan.
Masing-masing isolat diinokulasikan ke dalam 5-mL media cairan hara dan dibiakkan dengan cara diinkubasi selama 2 hari aerasi pada suhu 28°C.
Beberapa koloni yang terbentuk pada plate dihitung jumlahnya dengan metode ?most probable numbers? (MPN). Selanjutnya dilakukan identitikasi strain bakteri dengan metode ?Bergey's Manual of Detemzinative Bactenology, 8"? ed.? (Chaudhry dan Ali, 1988).
Koloni bakteri dari step sebelumnya yang muncul dalam piringan agar pada tanah tanpa perlakuan karbofuran kemudian dites kemampuan mendegradasi karbofuran. Kemampuan biakan bakten mendegradasi karbofuran diuji dalam media mineral [MgS04.7H2O O,2; KZHPO4 O,1, CaSO4 o,o4, FeSO4.7H2O 0,002 g liter" dalam air deslilasi; pH e,21. Apabila insektisida yang clitemukan kurang dan 50% dari konsentrasi awal, berarti tabung mengandung organisms pendegradasi insektisida (Chaudhiy dan Ali, 1988; lvlohapatra dan Awasthi, 1997).
Dari hasil penelitian diketahui bahwa berdasarkan kritena mutu karbon aktif menurut SNI(1995) terutama uji daya erap (sorpsi) terhadap iod, karbon aktif tempurung kelapa (KATK) memiliki daya erap yang tinggi melebihi kritena SNl minimal sebesar 750 mg/g. Sedangkan daya erap iodin dan karbon aktif Sekam padi (KASP) lebih nendah dari kriteria SNI.
Berdasarkan penetapan kapasitas erap isoterm Langmuir, diketahui bahwa interaksi KATK dengan desis 250 ppm dengan tanah, baik dengan tanah lnseptisol Karawang (IKM) maupun tanah Ultisol Jasinga (UK250), memiliki kapasitas erap tefhadap karbofuran tertinggi, yaitu masing-masing sebesar 135,1351 dan 769,2308 pg/g.
Penambahan karbon aktif ke dalam tanah berpengaruh nyata terhadap peningkatan karakteristik tanah seperti nllai pH, kandungan bahan organik dan kapasitas tukar kation serta peningkatan aktivilas mikroba tanah.
Dengan penambahan karbon aktif di tanah, menyebabkan perubahan pH tanah yang semula asam menjadi netral. Gugus kimia permukaan karbon aktif seperti karbonil, asam karboksilat, lakton, fenol dan eter sangat berpengaruh terhadap perubahan pH tanah.
Kondisi pH netral tanah merupakan kondisi yang balk bagi bakteri Pseudomonas sp untuk mendegradasi karbofuran menjadi metabolit (3-OH karbofuran), NHZCH3 dan C02. Bakteri Pseudomonas sp lebih menyukai tinggal dalam pori-pori karbon aktif, karena di dalam pori-pori terdapat sumber hara dan hasil peruraian karbofuran yaitu NHZCH3 dan CO2, yang digunakan sebagai sumber energi bagi mikroba, sehingga populasi dan aktifitas mikroba di tanah menjadi meningkat.
Dengan adanya peningkatan populasi bakteri dan peningkatan karakteristik tanah, maka konsentrasi residu karbofuran di tanah, tanaman padi (beras) dan air mengalami penurunan hingga di bawah batas maksimum residu (BMR), sehingga tidak membahayakan bagi mahluk hidup namun masih tetap toksik terhadap organisme pengganggu tanaman. Dengan demikian, KATK mempunyai prospek kedepan sebagai bahan pengendali residu kanbofuran di tanah.

Abstract
Up to the date, the use of pesticide in agricultural field is still high; the highest are among other insecticide followed by fungicide and herbicide. The commonly use type of insecticides are carbamate, organic phosphate and pyretroid. One of carbamate type is carbofuran that commonly use at paddy field to control pests such as brown planthopper and stemborer Carbofuran is a very toxic substance, however easily hydrolyzed. According to the previous research it is found that besides found in paddy field soil, carbofuran insecticide residue is also found in paddy field water and in fish tissue. This will cause among other the entering of carbofuran residue into water flow (river) and further will be consumed by cattle including human. When consumed by humanthis insecticide may effect the endocrine system (Eds - Endocrine Drsrupteds) that plays role in synthesis, secretion and reproduction.
Some research findings indicated the existence of carbofurane residue in soil, rice and water. Sudarmadji et al (1986) reported that the application of carbofuran insecticide with recomended dosage might leave residue in soil with concentration range of 0.42-0.53 ppm. Further, the result of research Samudra et at (1989) reported that 3 times application of carbofuran with dosage. of 0.60 kg/ha might leave residue in soil with concentration range of 0.0062-0.0216 ppm. Such carbofuran residue will only be found when the vegetation reached 29 days after planting and will not be detected when harvesting time. The survey in paddy production central in West Java and East Java indicated the existence of carbofuran residue in paddy field soil with concentration range of 0.06-0.16 ppm. The maximum limit of carbofuran residue in rice is 0.20 ppm. Varca and Tejada (1998) reported that insecticide residue that commonly found in body tissue of Nile tilapia fish (Oreochmmis nilotrcus) is carbofuran insecticide residue with concentration of 10.0-17.0 ppb. LC50 Carbofuran in fish of 0.17 ppm (Category C = LC50 < 0.5 ppm; is very toxic).
The technology for insecticide residue control in mainly agricultural environment has not yet been found until now. This research is urgently needed to support the development of continuous agriculture and environmental friendly. There are various kind of technology in controlling such negative impact, as from incineration, filling up to containment and bio-remediation (Wisjnuprapto, 1996). The use of active carbon will give good expectation to encounter soil pollution by organic or inorganic pollutants. Active carbon is able to absorb 99-9% carbofurane in drinking water from formerly 2250 mg/L (Cunningham et al., 1995).
The commonly use active carbon raw material is coconut shell. Coconut shell is easily available and can be found at traditional market. Most of coconut shells are just disposed and partly used as charcoal. Another potential raw material is paddy skin. Paddy skin is the outer part of paddy seed that rich of carbon, is the highest side production from paddy mills process. ln milling process, about 18-35% of rice husk will be produced (Houston, 1972). According to Tangenjaya (1991), the percentage of rice husk from unhulled paddy is vary, including the variety, ranges between 16.3 - 26_0%. There are about 60.000 paddy mills in Indonesia, 700 units of them are of medium and large capacities (Setyono et.aI., 2000). With rice production of 29 million tons/year it estimated will produce more than 11.5 tons of rice husk/year. Almost all of rice husk in ASEAN countries are just bumed or disposed. Cellulose and hemycellulose contain that amounting to 40% makes rice husk is potential as the raw material of active carbon. ln Indonesia, rice husk is generally used for bedding at chicken breeding.
Carbon active is produced through pyrolisys process from the materials that containing carbon, such as coconut shell and rice husk followed by activating phase of the carbon being produced. Activation is a process to eliminate tar that still -remain on active carbon pores by adding a chemical solution and healing at 800-1000°C, so that the surface of pores becomes wider (Manocha, 2003 and Darmstadt, 2004).
The selection of insecticide residue -absorption was made to 15 types of material that deemed have high absorb ability. The said materials are coconut shell, active carbon of coconut shell, wood charcoal (sate), wood active carbon, bamboo -active carbon, tea residue, rice husk carbon, active carbon of rice husk, organic fertilizer (animal wastes), kompos (vegetation), scouring sands, bokashi (mixture of organic fertilizer and kompos), fly ash, zeotyte and bentonyte. All of the materials are tested for their sorption ability against iod (imamkhasani etal., 1994).
The characteristics of active carbon from coconut shell and rice husk including: (a) the determination of surface area, (b) the determination of specific weight, (c) the determination of iod number, (d) water content, (e), pH (f) detemination of easily evaporated substance content, (g) ash content and (h) the determination of bonded carbon content (lmamkhasani et al., 1994; Kadirvetu et aI.,2000).
This research used two types of paddy field soil, lnceptisol from Karawang area (pH 5-6, medium clay (60-70%) and Ultisol from Jasinga area (pH 4-5, low clay (<30-40%). Soil characteristics covering of: the measurement of Soil physical and chemical characters are soil texture, pH, organic matter, phosphor and potassium contents, cation exchange value (Ca, Mg, K, Na, CEC-Cation exchange capacity and BS-base saturation), measurement ofAl°* and H* (Hitsuda, 1987).
Heteroatomic contents such as oxygen, hydrogen, chlor, sulfur, carbonyl, hydroxyl phenolate, anhydride, lactone and lactal on active carbon surface are identified by means of FT IR Bio-Rad FTS 3000 spectrometer Excalibur series, in wave length range 4000-400 cm" and resolution 2 cm".
Potassium bromide powder was used as sample matrix and reference material (sample ratio and KBr was 5: 100). The spectrum of reference compound is obtained from mixing the sample with KBr powder. All samples are pre dried at 110°C by vacuum so that fixed weight is obtained (Robert et al., 2000).
The determination of capacity and sorption ability of active carbon against carbofuran insecticide in soil was conducted at laboratory with fourteen soil combination and carbon active dosages. The capacity and sorption ability of active carbon were defined by means of isotherm equation model Langmuir (Evangelou, 1998).
To find out the impact of active carbon application to the rate of carbofuran residue content in soil, water and paddy, a green house research was conducted by using complete random design (RAL) factorial with three factors. The first factor is type of soil (inseptisol- Karawang/a1 and ultisol-Jasinga/a2), the second factor is active wrbon coconut shell active carbon-KATK/b1 and rice husk active carbon-KASP/b2), and the third factor is active carbon dosage ( 0 ppm/c1, 250 ppm/c2; 500 ppm/c3; 1000 ppm/c4). Paddy variety being used is IR 64. Pot dimension is 40 cm height and 30 cm bed. Each pot was filled with 10 kgs of air dried soil sample with the size of soil granule that passed the strainer of 2 mm, Observation was made within 0, 5, 25, 45, 65, 85. 100 and 140 incubation day, Each treatment is repeated for four times. ANOVA (Analysis of Variance) was used to rind out the actual difference between the treatments. ANOVA calculation was made by using GLM (General Linear Model) procedure from SAS -(Statistical Analysis System) version 8.0 (SAS Institute, 1991). The Statistical accurateness and error being used in this research was at P 5 0-05 (Wade et al., 1998).
The analysis of carbofuran residue was conducted by using standard method from Pesticide Committee (1997) by using gas Chromatography Shimadzu GC-4CM-PFE equipped with Electron Capture Detector (ECD) with the following device condition; DC-200 column content 5%, CW (AW), 60-80 mesh, column inner diameter 0.3 cm and length 150 cm, injector and detector temperature 230°C, column temperature 220°, nitrogen gas rate was 40 mi/minute, sensitivity 102) MQ, range 4 x 0.01 v, pulse 1.25. carbofurane and 3-OH carbofuran retention times under the above conditions was 4.5 minutes and 7.7 minutes. During fortification test, carbofuran recovery value with the above method ranges between 92-98%. Minimum detection limit with the above condition was 0.001 ppm.
Bacterial isolate was taken from experimental soil sample at green house that consisting of Inceptisol Karawang and Ultisol Jasinga soils at every observation time interval. Each isolate was inoculated into 5-mL nutrient liquid medium and breed through incubation for 2 days of aeration at temperature 28°C. Some colonies that formed on plate are counted by ?most probable numbers? (MPN) method. Further, bacterial strain is identified by "Bergey?s Manual of Determination Bacteriology, 8?? ed.? Method (Chaudhry and Ali, 1988).
Bacterial colony from previous step that occurred on gel plate in soil without carbofuran treatment is then test for carbofuran degradation ability. The bacterial ability to degrade carbofuran is tested in mineral media [MgSO4.7H2O 0.2); K2HPO 0.1, CaSO4, FeSO4.7H2O 0.002 g liter-1 in distilled water pH 6.2]. If the insecticide found is less then 50% from initial concentration, it means the tube containing insecticide degrading organism (Chaudhry and Ali, 1988; Mohapatra and Awasthi, 1997).
According to quality criterion of active carbon (SNI, 1995) mainly sorption test on iod, the coconut shell active carbon (KATK) has high sorption ability larger that SN! criterion minimum of 750 mg/g. while the sorption ability of iodin from active carbon of rice husk (KASP) is lower than SNI criterion.
Based on the determination of Langmuir isotherm sorption capacity, it is found that KATK interaction with 250 ppm dosage with soil, either with Inceptisol Karawang soil (IKM) or Ultisol Jasinga soil (UK250), has the highest carbofuran sorption capacity, namely respectively 135.1351 pg/g and 769.2308 ug/g.
The addition of active carbon into soil has an actual impact on the increase of soil characteristics such pH value, organic material content and cation exchange capacity as well as the increase of soil microbe activity. With the increase active carbon in soil, soil pH will altered from formerly acid to become neutral. The chemical properties of active carbon surface such as carbonyl, carboxylate acid, Iactone, phenol, and either are greatly influencing the alteration of soil pH.
The condition of soil neutral pH is a good condition for Pseudomonas sp bacteria to degrade carbofuran into metabolite (3-OH carbofuran), NHZCH3 and CO2. Pseudomonas sp bacteria prefers to stay in active carbon pores, because there is nutrient source in the pores from the result of carbofuran dispersion namely NH2CH3 and C02 that used as energy source for microbe, so that the population and activity of microbe in 'soil increased.
With the of bacteria population and soil characteristic improvement, the concentration of carbofuran residue in soil, paddy (rice) and water is decreased up to less than maximum residue limit (MRL), that will not endanger life creature however still toxic to plant pest organism. In so doing, KATK has a future prospect as the control agent for carbofuran residue in soil."
2004
D1238
UI - Disertasi Membership  Universitas Indonesia Library
cover
Enjarlis
"Pencemaran lingkungan perairan olch pestisida cukup mengkhawatirkan dan pestisida tersebut di lingkungan bercampur dengan pestisida lain. Pengolahan air yang tercemar pestisida harus dilakukan supaya ridak mencemari sumber air minum. Karbofuran dan endosulfan dipilih sebagai model kontaminan untuk dis isihkan melalui ozonasi, karena insektisida tersebut masih digunakan, kandungannya rneningkat di lingkungan jika insektisida carbosulfan, benfuracarb, dan furathiocarb juga digunakan. Reaksi ozonasi selalu menggunakan 03 dan OH. keduanya oksidator kuat, O3 selektifitasnya tinggi dan oH kurang selektif. Ozonasi dcngan karbon aktif diharapkan dapat mendegradasi campuran endosulfan-karbofuran secara sempu rna. Tujuan penelitian yaitu mcndegradasi karbofuran dan endosulfan, khususnya; (1) mengetahui pengaruh reaksi hidrolisis terhadap laju degradasi carbofuran dan endosulfan pada ozonasi dengan dan tanpa karbon aktif (2) memahami fenomena degradasi karbofuran dan endosulfan tunggal dan campuran pada ozonasi dengan dan tanpa karbon aktif , terutama; (a) menemukan pengaruh degradasi campuran karbofuran-endoulfan terhadap laju degradasi karbofuran dan endosulfan dan (b) mencmukan peran karbon aktif pada degradasi karbofuran dan endosulfan. Percobaan dilakukan 4 tahap. Tahap I hidrolisis pada pH (5, 7, dan 9) karbofuran-endosulfan tunggal dan campuran, tabap ke-11 ozonasi karbofuran dan endosulfan tunggal pada pH (5, 7, dan 9) dengan dan tanpa karbon aktif, tahap III pengaruh suhu (20, 25 dan 30°C) pada ozonasi dengan dan tanpa karbon aktif,dan tahap IV identifikasi produk antara ozonasi campuran karbofuran dan endosulfan dengan dan tanpa karbon aktif pada pH 7 dan suhu 30°C dengan GC/MS. Kcsimpulan pengaruh hidrolisis cukup signifikan pada pcnyisihan karbofuran dan endosulfan terutama pada Kadar dan pH relatif besar. Fenomena degradasi karbofuran dan endosulfan yang terjadi yairu peran oksidasi oleh ozonasi jauh lebih besar dibandingkan terhadap hidrolisis. Ozonasi campuran karbofuran-endosu1fan dapat meningkatkan laju degradasi insektisida dibandingkan ozonasi secara tunggal, hal ini disebapkan adanya pecan hidrolisis campuran karbofuran-endosulfan. Penambahan karbon aktif pada ozonasi campuran karbofuran-endosulfan secara kenetika pengearuh idak signifikan terhadap laju degredasi reaktan awal dibandingkan peningkatan suhu. Namun demikian, karbon aktif berperan pada degredasi lanjut produk antara menjadi produk antara yang lebih sederhana, bersifat polar dan mudah terdegrasi secara alamiah. Dengan demikian, penambahan karbon aktif pada ozonasi dapat digunakan secara proses untuk detoksifikasi karbofuran dan endosulfan.
The environtmental pollution by pesticide is relatively worrying as it is mixed with other pesticides. The treatment of water by pesticide must be done to avoid drinking water pollution. Carbofuran & endosulfan are choosen as contaminants model to be removal by ozonation since those insecticides still used, and their content in environment will increase if carbosulfan, benfuracarb, and furathiocarb also used. Ozonation reaction always performed using 03 and 'OH, as they are strong oxidator, high selectivity and OH has low selectivity. Ozonation with activated carbon hope fu lly can degrade the carbofuran-endosulfan mixtures. The aim of this research is to degrade carbofuran - endosulfan by ozonation, especially (1) to the effec of hidrolysis reaction between carbofuran and endosulfan with and without activated carbon, (2) to understand the phenomenon of degradation carbofuran and endosulfan in ozonation with and without activated carbon especially: (a) effect degradation of carbofuran-endosul fan mixtures to the rate of degradation carbofuran and endosulfun respetively, (b) the role of activated carbon in degradation of car bofuran and endosulfan. The experiment was performed in four stages. Firstly, hydrolysis of carbofuran, endosulfan and carbofuran-endosulfan mixtures at different pH condition (5, 7, and 9). secondly, ozonation of carbofuran, endosulfan and carbofuran-endosulfan mixtures at different pH condition with and without activated carbon. Thirdly ozonation with and without at different temperature (20, 25, and 30°C) with and without activated carbon and the last stage was product identification in the ozonation of carbofuran-endosulfan mixtures with and without activated carbon at pH 7, temperature 300C using GC/M S. In conclusion, the effect of hydrolysis is significantly enough at the removal of carbofuran and endosulfan especially at high concentration and high pH condition. The phenomenon of degradation carbofuran-endosulfan occurred is caused by the role of the oxidation by ozon compared to the hydrolysis. Ozonation of carbofuran-endosulfan mixtures can increase the rate of degredation of insecticide compared to single insecticide ozonation. This is because the effect increasing hydrolysis rate of carbofuran-endosulfan mixture. In the kinetic point the addition of activated carbon in ozonation is not significantly effect to the rate of degradation in initial reactant compared to the increasjng temperature. However, The activated carbon plays a role ini the degradation of complex intermediate to simple intermediate, it is easy a polar chemical and it to degrade of naturally. The addition of activated carbon in ozonation can be used as a carbofuran and endosulfan detoxification process in water."
Depok: Fakultas Teknik Universitas Indonesia, 2008
D1370
UI - Disertasi Open  Universitas Indonesia Library
cover
Enjarlis
"Pencemaran lingkungan perairan oleh pestisida cukup mengkawatirkan dan pestisida tersebut di lingkungan bercampur dengan pestisida lain. Pengolahan air yang tercemar pestisida harus dilakukan supaya tidak mencemari sumber air minum. Karbofuran dan endosulfan dipilih sebagai model kontaminan untuk disisihkan melalui ozonasi, karena insektisida tersebut masih diigunakan, kandungannya meningkat di lingkungan jika insektisida carbosnifan, benfuracarb, dan furathiocorb juga digunakan. Reaksi ozonasi selalu menggunakan O3 dan OH, keduanya oksidator kuat O3, selektifitasnya tinggi dan OH kurang selektif. Ozonasi dengan karbon aktif diharapkan dapat mendegradasi campuran endosulfan-karbofuran secara sempurna. Tujuan penelitian yaitu mendegradasi karbofuron dan endosulfan, khususnya; (1) mengetahui pengaruh reaksi hidrolisis terhadap laju degradasi carbofuron dan endosulfan pada ozonasi dengan dan tanpa karbon aktif (2) memahami fenomena degradasi karbofuran dan endosulfan tunggal dan campuran pada ozonasi dengan dan tanpa karbon aktif, terutama: (a) menemukan penaruh degradasi campuran karbofuran-endosulfan terhadap laju degradasi karbofuran dan endosulfan dan (b) menemukan peran karbon aktif pada degradasi karbofuran dan endosulfan. Percobaan dilakukan 4 tahap. Tahap 1 hidrolisis pada pH (5, 7, dan 9) karbofuran-endosulfan tunggal dan campuran, tahap ke-II ozonasi karbofuran dan endosulfan tunggal pada pH (5, 7, dan 9) dengan dan tanpa karbon aktif, tahap III pengaruh suhu (20,25 dan 30 derajat C) pada ozonasi dengan dan tanpa karbon aktif, dan tahap IV identifikasi produk antara ozonasi campuran karbofuron dan endosulfan dengan dan tanpa karbon aktif pada pH 7 dan suhu 30 derajat C dengan GC/MS. Kesimpulan pengaruh hidrolis cukup signifikan pada penyisihan karbofuran dan endosulfan, terutama pada kadar dan pH relatif besar. Fenomena degradasi karbofuran dan endosulfan, terutama pada Kadar dan pH relatif besar. fenomenadegradasi karbofuran dan endosulfan yang terjadi yaitu eran oksidasi oleh ozon jauh lebih besar dibandingkan terhadap hidrolisis. Ozonasi campuran karbofuran-endosulfan dapat meningkatkan laju degradasi insektisida dibandingkan ozonasi secara tunggal, hal ini disebabkan adanya peran hidrolisis campuran karbofuran-endosulfan. Penambahan karbon aktif pada ozonasi campuran karbofuran-endosulfan secara kenetika pengaruh signifikan terhadap laju degradasi reaktanawal dibandingkan peningkatan suhu. namun demikian, karbon aktif berperan pada degradasi lanjut produk antara pendaji produk antara yang lebih sederhana, bersifat polar dan mudah terdegradasi secara ilmiah. Dengan demikian, penambahan karbon aktif pada ozonasi dapat digunakan sebagai proses untuk detoksifikasi karbofuran dan endosulfan."
Depok: Fakultas Teknik Universitas Indonesia, 2008
D905
UI - Disertasi Open  Universitas Indonesia Library