Ditemukan 2 dokumen yang sesuai dengan query
Theresia Lidya Octaviani
"Kanker merupakan salah satu penyebab kematian yang paling sering terjadi di seluruh dunia. Salah satu jenis kanker yang dapat mengancam terutama pada wanita adalah kanker payudara. Terlambatnya pendeteksian dini pada penderita kanker payudara menyebabkan sulitnya penanganan untuk proses penyembuhan dan besarnya angka kemungkinan kematian. Metode machine learning banyak diaplikasikan dalam kasus pendeteksian dini karena metode machine learning cukup efektif untuk mendiagnosis suatu penyakit. Pada penelitian ini digunakan metode Bayesian Logistic Regression untuk memprediksi kanker payudara. Metode Bayesian digunakan untuk menghitung bobot dari setiap parameter dari data pada regresi logistik. Data yang digunakan pada penelitian ini adalah data Wisconsin Breast Cancer Database (WBCD, 1992) yang dapat diakses melalui UCI Machine Learning Repository. Berdasarkan hasil uji coba, metode Bayesian Logistik Regression memperoleh akurasi sebesar 96,85%, precision, recall dan F-1 score sebsar 95,44%. Hasil simulasi tersebut menunjukkan bahwa Bayesian Logistic Regression cukup baik untuk membantu praktisi medis dalam mendiagnosis kanker payudara.
Cancer is one of the most common cause of death in the world. One type of cancer that can be threaten women is breast cancer. The delay in early detection in patient with breast cancer can cause difficulty in recovery process and high mortality rate. Machine learning technique is widely applied in cases of early detection, because machine learning technique is quite effective in diagnose a disease. In this study, the Bayesian Logistic Regression method was used to predict breast cancer. The Bayesian method is used to calculate the weight of each parameter from the data in logistic regression. The data that used in this study is the Wisconsin Breast Cancer Database from UCI Machine Learning Repository. Based on the results of the experiment, Bayesian Logistic Regression method give 96.85% accuracy, and 95,44% precision, recall and F-1 score. These performance results show that the Bayesian Logistic Regression is good enough to help medical experts in diagnosing breast cancer."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Amalia Chusna Mohtar
"Penelitian ini bertujuan mengembangkan model prediksi kanker payudara dengan Convolutional Neural Networks (CNN) dan analisis citra medis untuk mendeteksi lesi yang bersifat jinak maupun ganas. Data yang digunakan mencakup citra mamogram dari CBIS-DDSM serta data primer dari rumah sakit. Tahap pertama melibatkan penggunaan algoritma YOLO untuk segmentasi breast tissue, guna menghapus noise latar belakang dan memastikan fokus pada area diagnostik yang relevan. Selanjutnya, diterapkan teknik Contrast Limited Adaptive Histogram Equalization (CLAHE) untuk meningkatkan kontras dan menonjolkan detail struktural. Ekstraksi fitur dari full mammogram dan Region of Interest (ROI) mask kemudian digabungkan dalam arsitektur CNN multi-input untuk klasifikasi biner kanker payudara. Hasil evaluasi menunjukkan bahwa meskipun model mencapai akurasi training yang tinggi (antara 95% hingga 98%), akurasi pada data validasi baru berkisar pada 56% hingga 63%, dengan nilai F1-score masing-masing 0,69 untuk kasus benign dan 0,55 untuk kasus malignant, serta AUC-ROC sebesar 0,57. Temuan ini mengindikasikan adanya tantangan overfitting dan kurang optimalnya pemisahan antara kelas benign dan malignant. Penelitian ini memberikan kontribusi penting sebagai langkah awal dalam pengembangan sistem diagnosis dini yang dapat mendukung proses pengambilan keputusan klinis.
This study aims to develop a breast cancer prediction model using Convolutional Neural Networks (CNN) and medical image analysis to detect both benign and malignant lesions. The data utilized includes mammogram images from CBIS-DDSM and primary data collected from a hospital. The initial stage employs the YOLO algorithm to segment breast tissue, removing background noise and ensuring focus on diagnostically relevant areas. Subsequently, Contrast Limited Adaptive Histogram Equalization (CLAHE) is applied to enhance image contrast and emphasize structural details. Feature extraction from full mammograms and Region of Interest (ROI) masks is then combined in a multi-input CNN architecture for binary breast cancer classification. Evaluation results indicate that although the model achieves high training accuracy (ranging from 95% to 98%), validation accuracy remains between 56% and 63%. The F1-scores are 0.69 for benign cases and 0.55 for malignant cases, with an AUC-ROC of 0.57. These findings highlight challenges related to overfitting and suboptimal class separability between benign and malignant categories. This research serves as an important initial step toward developing an early diagnostic support system to aid clinical decision-making. "
Depok: Fakultas Teknik Universitas Indonesia, 2025
S-pdf
UI - Skripsi Membership Universitas Indonesia Library