Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 3 dokumen yang sesuai dengan query
cover
Kheisya Amanda
"Dalam industri perbankan, penilaian kredit yang akurat merupakan kunci dalam mengelola risiko kredit. Perkembangan ekonomi digital telah membawa inovasi dalam proses pemberian kredit yang ditandai dengan munculnya Layanan Jasa Pinjam Meminjam Uang Berbasis Teknologi Informasi. Hal ini membuat bank dihadapkan pada tantangan penilaian kredit yang lebih kompleks. Seiring perkembangan ilmu pengetahuan dan teknologi, algoritma machine learning telah terbukti memiliki kinerja yang unggul dalam proses penilaian kelayakan kredit. Penelitian ini menggunakan dua algoritma boosting, yaitu AdaBoost dan XGBoost dalam klasifikasi kinerja pembayaran pinjaman kredit. Kinerja pembayaran pinjaman kredit dibedakan menjadi dua kelas, yaitu Good dan Bad dengan kriteria Good adalah debitur yang melakukan pembayaran pinjaman kredit tidak lebih dari 3 bulan dari batas jatuh tempo dan Bad adalah debitur yang melakukan pembayaran pinjaman kredit lebih dari 3 bulan dari batas jatuh tempo. Dalam implementasi metode, digunakan data riwayat pembayaran pinjaman kredit khususnya untuk produk Kredit Usaha Mikro (KUM) digital yang diperoleh dari PT Bank X Tbk. dengan jumlah data berjumlah 2190 observasi. Jumlah observasi yang termasuk dalam kelas Good mencapai 89,36% dari total keseluruhan observasi, menyisakan 10,64% yang termasuk dalam kelas Bad. Pada penelitian ini digunakan metode Syntetic Minority Oversampling Technique (SMOTE) untuk mengatasi dataset yang tidak seimbang. Kinerja metode dievaluasi menggunakan nilai metrik accuracy, sensitivity, specificity, dan AUC-ROC dengan mempertimbangkan proporsi data training yang berbeda, mulai dari 50% sampai dengan 90%. Untuk meningkatkan keandalan hasil, simulasi metode dilakukan sebanyak lima kali. Hasil penelitian ini menunjukkan bahwa XGBoost mengungguli AdaBoost dalam klasifikasi kinerja pembayaran pinjaman kredit, terbukti dari perolehan kinerja yang lebih baik pada mayoritas metrik evaluasi dan kelima simulasi yang dilakukan, dengan rata-rata accuracy sebesar 87,71%, sensitivity sebesar 92,29%, specificity sebesar 44,21%, dan AUC-ROC sebesar 81,16%.

In the banking industry, accurate credit assessment is key to managing credit risk. The development of the digital economy has brought innovations in the credit granting process, marked by the emergence of Financial Technology-Based Money Lending Services. This presents banks with more complex credit assessment challenges. With the advancement of science and technology, machine learning algorithms have proven to be superior in the process of creditworthiness assessment. This research utilizes two boosting algorithms, namely AdaBoost and XGBoost, in classifying credit loan payment performance. The performance of credit loan payments is divided into two classes: Good and Bad, where Good refers to debtors who make credit loan payments no more than 3 months past the due date, and Bad refers to those making payments more than 3 months past the due date. In the implementation of the method, data on credit loan payment history, specifically for digital Micro Business Credit (KUM) products obtained from PT Bank X Tbk., were used, totaling 2190 observations. The number of observations classified as Good accounted for 89.36% of the total, leaving 10.64% in the Bad category. This study employed the Synthetic Minority Oversampling Technique (SMOTE) to address the imbalanced dataset. The performance of the method was evaluated using the metrics of accuracy, sensitivity, specificity and AUC-ROC, considering different proportions of training data, ranging from 50% to 90%. To enhance the reliability of the results, the method simulation was conducted five times. The findings indicate that XGBoost outperforms AdaBoost in classifying credit loan payment performance, as evidenced by its superior performance across all evaluation metrics and all five simulations, achieving an average accuracy of 87.71%, sensitivity of 92.29%, specificity of 44,12%, and AUC-ROC of 81.16%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ruth Intan Davina
"Ketidakseimbangan data merupakan tantangan umum dalam klasifikasi, di mana salah satu kelas memiliki ukuran sampel yang jauh lebih sedikit dibandingkan kelas lainnya dalam suatu dataset. Kondisi ini dapat menghasilkan klasifikasi yang memiliki akurasi prediksi yang tinggi untuk kelas mayoritas, tetapi cenderung rendah untuk kelas minoritas yang memiliki kontribusi kecil terhadap kesalahan total. Dalam aplikasi dunia nyata, kesalahan klasifikasi pada kelas minoritas sering kali memiliki konsekuensi yang lebih serius, seperti pada kasus deteksi serangan siber pada sistem keamanan jaringan. Kegagalan dalam mendeteksi serangan siber (false negative) dapat membuka celah keamanan yang berakibat fatal. Untuk menangani masalah ketidakseimbangan data, berbagai metode telah dikembangkan, termasuk pendekatan ensemble seperti SMOTEBoost (Synthetic Minority Oversampling Technique and Boosting) dan RUSBoost (Random Undersampling and Boosting). Pada penelitian skripsi ini dilakukan studi empiris pada data serangan malware dari dataset AWID3 menggunakan metode SMOTEBoost dan RUSBoost dan dibandingkan performanya dengan algoritma dasarnya, AdaBoost. Simulasi dilakukan dengan berbagai kombinasi hyperparameter dan variasi proporsi data training dan testing untuk mengevaluasi kinerja model secara komprehensif. Hasil penelitian menunjukkan bahwa metode SMOTEBoost dan RUSBoost memiliki kinerja yang sebanding dalam mendeteksi kelas minoritas, di mana nilai recall mencapai 0,99, dan lebih unggul dari metode AdaBoost dengan nilai recall 0,87-0,88. Penelitian tambahan yang dilakukan untuk mengevaluasi kinerja masing-masing metode pada berbagai jenis ketidakseimbangan menunjukkan bahwa kinerja metode AdaBoost menurun seiring dengan meningkatnya ketidakseimbangan relatif, sedangkan metode SMOTEBoost dan RUSBoost tetap stabil dengan kinerja yang baik. Namun, ukuran sampel minoritas yang terbatas atau absolute rarity memiliki dampak pada penurunan kinerja metode SMOTEBoost dan RUSBoost.

Imbalanced data is a common challenge in classification tasks, where one class has significantly fewer instances compared to others within a dataset. This condition can result in classification models with high predictive accuracy for the majority class but tend to perform poorly on the minority class, which contributes little to the overall error rate. In real-world applications, misclassifications errors on the minority class often bear more severe consequences, such as in the case of detecting cyber attacks in network security systems. Failure to detect cyber attacks (false negatives) can lead to security breaches with fatal consequences. To address the imbalanced data problem, various methods have been developed, including ensemble approaches such as SMOTEBoost (Synthetic Minority Oversampling Technique and Boosting) and RUSBoost (Random Undersampling and Boosting). In this thesis research, an empirical study was conducted on malware attack data from the AWID3 dataset using the SMOTEBoost and RUSBoost, and their performance was compared with their base algorithm, AdaBoost. Simulations were carried out with various combinations of hyperparameter and different train-test split to comprehensively evaluate the model’s performance. The research results showed that SMOTEBoost and RUSBoost methods had comparable performance in detecting the minority class, achieving remarkable recall values of 0.99, outperformed the AdaBoost method, which had recall values ranging from 0.87 to 0.88. Additional research conducted to evaluate the performance of each method on various types of imbalance showed that the performance of the AdaBoost method decreased as the relative imbalance increased, while the SMOTEBoost and RUSBoost methods maintained a stable and robust performance. However, a limited number of minority instances or absolute rarity had a negative effect on the performance of the SMOTEBoost and RUSBoost methods."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Joan Bidadari Annandale
"Penyakit Alzheimer adalah penyakit progresif yang dimulai dengan hilangnya ingatan ringan dan berkembang hingga hilangnya kemampuan bicara dan respon terhadap lingkungan. Penyakit ini belum dapat disembuhkan, dan pengobatan saat ini hanya berfungsi mengurangi gejala sementara. Oleh karena itu, penting untuk mengidentifikasi risiko utama pengembangan Alzheimer dan memberikan diagnosis yang tepat guna mendukung penelitian lebih lanjut. Model regresi Cox-Proportional Hazard sering digunakan untuk menangani data survival tersensor, tetapi saat ini, machine learning menunjukkan potensi besar. Dua model machine learning, Random Survival Forest dan Gradient Boosting Survival Analysis, mampu menangani data survival dan data tersensor tanpa memerlukan asumsi parameter. Kedua model ini juga menghindari overfitting dan lebih mudah diinterpretasi dibandingkan model non-parametrik lainnya. Hasil pada data Alzheimer menunjukkan bahwa Gradient Boosting Survival Analysis memiliki performa terbaik dengan nilai C-index 0.8503, diikuti oleh Random Survival Forest dengan nilai 0.8286. Model regresi Cox-PH memiliki kinerja terendah dengan nilai C-index 0.8092, dan data Alzheimer yang digunakan tidak memenuhi asumsi proportional hazard. Model Gradient Boosting Survival Analysis dan Random Survival Forest mengidentifikasi CDRSB dan FDG sebagai risiko terpenting, sedangkan model Cox-PH mengidentifikasi AV45 dan FDG.

Alzheimer's disease is a progressive disease that begins with mild memory loss and progresses to loss of speech and response to the environment. There is no cure for the disease, and current treatments only temporarily reduce symptoms. Therefore, it is important to identify the main risk factors for developing Alzheimer's and provide an accurate diagnosis to support further research. The Cox-Proportional Hazard regression model is often used to handle censored survival data, but currently, machine learning shows potential. Two machine learning models, Random Survival Forest and Gradient Boosting Survival Analysis, are able to handle survival data and censored data without requiring parameter assumptions. Both models also avoid overfitting and are easier to interpret than other non-parametric models. The results on Alzheimer's data show that Gradient Boosting Survival Analysis has the best performance with a C-index value of 0.8503, followed by Random Survival Forest with a value of 0.8286. The Cox-PH regression model has the lowest performance with a C-index value of 0.8092, and the data used does not meet the proportional hazard assumption. The Gradient Boosting Survival Analysis and Random Survival Forest models identified CDRSB and FDG as the most important risks, while the Cox-PH model identified AV45 and FDG."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library