Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 4 dokumen yang sesuai dengan query
cover
Miranthy Cinthya Rachman
"Tingginya jumlah sampah plastik menjadi masalah yang sangat krusial di Indonesia. Salah satu upaya untuk mengatasi masalah ini adalah dengan membuat alternatif material lain yang berasal dari bahan baku hayati dan mampu dimanfaatkan sebagai plastik, yaitu bioplastik. Bioplastik merupakan plastik yang terbuat dari material biologis atau dapat berupa plastik yang lebih mudah didegradasi oleh mikroorganisme. Telah banyak penelitian mengenai bioplastik berbasis pati kulit pisang yang telah dilakukan. Akan tetapi, hasil dari sebagian besar penelitian tersebut menunjukkan bahwa bioplastik berbasis pati kulit pisang memiliki sifat fisik dan mekanik yang kurang baik. Pada penelitian ini, bioplastik berbasis pati kulit pisang diproduksi dengan variasi rasio bahan penguat berupa serat alami dari daun nanas dan lempung untuk meningkatkan sifat fisik dan mekaniknya. Untuk mencapai tujuan tersebut, digunakan komposisi serat daun nanas terhadap total bahan penguat sebesar 5%, 10%, 15%, dan 20% dengan adanya kontrol positif dan negatif. Karakteristik bioplastik seperti kuat tarik (tensile strength), pemanjangan saat putus (elongation at break), biodegradabilitas, daya serap air, sifat morfologi permukaan, serta interaksi antar bahan telah diamati dalam penelitian ini. Hasil penelitian ini menunjukkan pengaruh serat daun nanas terhadap karakteristik bioplastik adalah meningkatkan kuat tarik dan kemampuan degradasi, tetapi menurunkan nilai elongasi. Sementara itu, pengaruh lempung adalah meningkatkan ketahanan air. Berdasarkan karakterisasi yang telah dilakukan, komposisi bioplastik terbaik adalah sampel BCS4 dengan komposisi serat daun nanas terhadap total bahan penguat sebesar 20% yang memiliki nilai kuat tarik sebesar 6,52 MPa, nilai elongasi sebesar 13,44%, daya serap sebesar 126,09%, waktu degradasi selama 8 hari. Potensi pemanfaatan bioplastik berbasis pati kulit pisang dengan bahan penguat lempung dan serat daun nanas ini adalah sebagai kemasan polybag tanaman yang dapat ditanam langsung bersama bibit tanaman.

The high amount of plastic waste is a very crucial problem in Indonesia. Based on data from the Sistem Informasi Pengelolaan Sampah Nasional, the annual amount of waste in Indonesia in 2020 was 32 million tons, a rapid increase from previous years due to the COVID-19 pandemic. One effort to overcome this problem is to make alternative materials derived from biological raw materials and can be used as plastics, namely bioplastics. Bioplastics are plastics made from biological materials or can be plastics that are more easily degraded by microorganisms. Many studies on banana peel starch-based bioplastics have been conducted. However, the results of most of these studies show that banana peel starch-based bioplastics have poor physical and mechanical properties. In this study, banana peel starch-based bioplastics were produced with variations in the ratio of reinforcements in the form of natural fibers from pineapple leaves and clay to improve their physical and mechanical properties. To achieve this goal, the composition of pineapple leaf fiber is used for the total reinforcing material of 5%, 10%, 15%, and 20% with positive and negative controls. Bioplastic characteristics such as tensile strength, elongation at break, biodegradability, water absorption, surface morphological properties, and interactions between materials have been observed in this study. The results of this study show the effect of pineapple leaf fiber on bioplastic characteristics is to increase tensile strength and degradation ability but decrease the elongation at break value. Meanwhile, the effect of clay is to increase water resistance. Based on the characterization that has been done, the best bioplastic composition is BCS4 samples with pineapple leaf fiber composition against a total reinforcing material of 20% which has a tensile strength value of 6,52 MPa, elongation value of 13,44%, absorption capacity of 126,09%, degradation time for 8 days. The potential use of banana peel starch-based bioplastics with clay reinforcement materials and pineapple leaf fiber is as a plant polybag packaging that can be planted directly with plant seeds."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ade Sari Triana
"ABSTRAK
Penumpukan sampah plastik terjadi karena penguraian plastik yang membutuhkan waktu hingga ratusan bahkan ribuan tahun. Bioplastik merupakan plastik atau polimer yang dapat dengan mudah terdegradasi secara alami. Pati merupakan bahan baku yang paling sering digunakan dalam pembuatan bioplastik karena sifatnya yang murah, dapat diperbarui, dan biodegradable. Namun, film berbahan dasar pati menunjukkan sifat mekanik dan daya tahan air yang buruk. Untuk mengatasi kelemahan tersebut, pati dapat dikombinasikan dengan material sintetis maupun alami. Nanoselulosa merupakan nanomaterial alami yang berasal dari selulosa dengan keunggulan berupa kuat tarik yang tinggi, kristalinitas yang tinggi, dan luas permukaan yang tinggi. Tujuan dari penelitian ini adalah untuk mengetahui pengaruh konsentrasi nanoselulosa, temperatur gelatinisasi, dan pH gelatinisasi terhadap karakteristik bioplastik dan untuk mendapatkan formulasi terbaik dalam pembuatan bioplastik yang sesuai dengan standar kantong plastik. Pati yang digunakan berasal dari tepung tapioka komersial. Nanoselulosa diisolasi dari ampas tebu melalui proses dewaxing menggunakan pelarut benzena-metanol (2:1); bleaching menggunakan NaClO2 1 wt% pada suhu 80 oC selama 3 jam; penghilangan hemiselulosa menggunakan NaOH 17,5% pada suhu ruang selama 2 jam; hidrolisis asam menggunakan HCl 4 M pada suhu 80 oC selama 2 jam; dan ultrasonikasi selama 5 menit. Berdasarkan karakterisasi FTIR dan XRD, metode isolasi nanoselulosa yang dilakukan menghasilkan nanoselulosa dengan tingkat kristalinitas 27,3% dan ukuran kristal 161,424 nm. Sintesis biokomposit dilakukan dengan mencampurkan pati, nanoselulosa, akuades, dan plasticizer gliserol sebanyak 25% b/b. Konsentrasi nanoselulosa divariasikan dengan nilai 0, 1, 3, 5, 10, dan 15% b/b. Berdasarkan karakterisasi awal didapatkan nilai optimal kadar nanoselulosa adalah sebesar 10% b/b dan selanjutnya dijadikan basis dalam penelitian ini. Variasi temperatur terdiri atas 4 tingkatan, yaitu 75, 80, 85, dan 90 oC, sementara itu variasi pH terdiri atas 4 tingkatan, yaitu 4, 3, 2, dan 1, sehingga terdapat 16 unit percobaan. Karakterisasi biokomposit dilakukan dengan pengujian kekuatan mekanik berupa kuat tarik dan elongasi, uji daya serap air, serta uji biodegradabilitas dengan melakukan penguburan material pada tanah (soil burial test). Hasil terbaik diperoleh pada variasi temperatur 75 oC dan pH 3 dengan nilai kuat tarik sebesar 23 kgf/cm2, elongasi sebesar 6,67%, daya serap air sebesar 98%, dan dapat terdegradasi hingga 93,16% dalam waktu 10 hari.

ABSTRACT
Accumulation of plastic waste occurs because it can take hundreds, or even thousands of years to fully decompose. Bioplastics are plastics or polymers that can be easily degraded. Starch is the most common feedstock used to make bioplastic due to its inexpensive, renewable, and biodegradable properties. However, starch-based film exhibits poor mechanical properties and poor water barrier properties. In order to overcome these drawbacks, starch can be mixed with various synthetic and natural materials. Nanocellulose is a natural nanomaterial derived from cellulose consists of attractive properties, such as high tensile strength, high crystallinity, and high surface area. The aim of this research was to study the effect of nanocellulose concentrations, temperature of gelatinization, and pH of gelatinization on the bioplastic characteristics and to obtain the best formulation in making a good quality bioplastic according to the standards of plastic bag. The starch used obtained from commercial tapioca flour. Nanocellulose was isolated from sugarcane bagasse through a dewaxing process using benzene-methanol (2:1); bleaching using NaClO­2 1 wt% at 80 oC for 3 hours; hemicellulose removal using NaOH 17.5% at room temperature for 2 hours, acid hydrolysis using HCl 4 M at 80 oC for 2 hours; and continued with ultrasonication for 5 minutes. Based on FTIR and XRD characterizations, the nanocellulose isolation method produced nanocellulose with a crystallinity level of 27.3% and a crystal size of 161.424 nm. The synthesis of biocomposite is carried out by mixing starch, nanocellulose, distilled water, and glycerol as much as 25% w/w. The nanocellulose concentration was varied with values of 0, 1, 3, 5, 10, and 15% w/w. Based on the initial characterization, the optimal value of nanocellulose concentration was 10% w/w and to be used as the basis for this research. Gelatinization temperature consisting of 4 levels, there are 75, 80, 85, and 90 oC, while gelatinization pH consisting of 4 levels, there are 4, 3, 2, and 1, so that there are 16 experimental units. Biocomposite characterization was carried out by mechanical tests consisting of tensile strength and elongation at break, water absorption test, and soil burial test to determine biocomposite biodegradability. The result show that the gelatinization temperature of 75 oC at pH 3 produces the best characteristic of starch-nanocellulose biocomposite with tensile strength of 23 kgf/cm2, elongation at break of 6.67%, water absorption of 98%, and can be degraded up to 93,16% within 10 days."
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Larasati Windiani
"ABSTRAK
Plastik yang banyak digunakan saat ini masih terbuat dari polimer sintetis yang sulit terdegradasi oleh mikroorganisme tanah. Pengembangan polimer alami seperti campuran protein dengan polimer sintetis untuk pembuatan bioplastik terus berlanjut. Penelitian ini akan menggunakan Spirulina platensis dicampur dengan polimer sintetik dengan pemanasan dan sonikasi sebagai pra-perlakuan untuk mengoptimalkan karakteristik. Dalam penelitian ini, 2,5 g serbuk Spirulina platensis dilarutkan dalam air alkali dan akuades dengan variasi pH 7, 8,5, 10, dan 11, kemudian diplastisasi oleh gliserol dan pemanasan pada 70-90oC dengan variasi waktu pemanasan 30, 60, dan 120 menit. Setelah itu, Spirulina terplastisasi dicampurkan dengan 2,5 g polivinil alkohol. Larutan campuran kemudian dikeringkan dan dibentuk pada pelat kaca. Berdasarkan hasil variasi pH pelarut, derajat keasaman pelarut terbaik untuk menghasilkan sifat mekanik yang optimum yaitu pelarut dengan pH 10. Walaupun nilai kuat tarik lebih rendah daripada pada pH 11, namun nilai elongasi mendekati nilai elongasi pada plastik komersial. Lama pemanasan yang terbaik untuk menghasilkan sifat mekanik yang optimum adalah 60 menit pada pH pelarut diatas 8,5. Jika menggunakan pH pelarut dibawah 8,5, maka lama pemanasan terbaik adalah 120 menit. Derajat keasaman pelarut merupakan parameter yang paling berpengaruh terhadap sifat mekanik bioplastik dari Spirulina-PVA sedangkan waktu pemanasan tidak berpengaruh secara signifikan.

ABSTRACT
Plastics that are widely used today are still made of synthetic polymers that are difficult to degrade by soil microorganisms. The development of natural polymer such as protein blend with synthetic polymer for bioplastic manufacturing continues. This study will utilize Spirulina platensis blended with synthetic polymers with heating and sonication as pre treatment to optimize the characteristic. In this research, 2.5 g of Spirulina platensis powder dissolved in alkali and distillate water with pH variation of 7, 8.5, 10, and 11, then plasticized by glycerol and heating at 70 90oC with heating time variation of 30, 60, and 120 minutes. After that, blending with 2.5 g polyvinyl alcohol. Mixed solution then dried and formed as flex bar. Based on the results of solvent pH variation, the degree of acidity of the best solvent to produce optimum mechanical properties is a solvent with a pH of 10. Although the value of tensile strength is lower than at pH 11, the elongation value is close to the elongation value in commercial plastics. The best heating time to produce optimum mechanical properties is 60 minutes at a solvent pH above 8.5. If using a solvent pH below 8.5, the best heating time is 120 minutes. Degree of solvent acidity is the most influential parameter on the bioplastic mechanical properties of Spirulina PVA while the heating time has no significant effect.
"
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Gian Varian Setyadi
"Kebutuhan akan media pengemas makanan yang semakin meningkat seiring dengan era disrupsi teknologi, selaras dengan meningkatnya tindakan pencemaran lingkungan yang terbilang tidak terkendali. Salah satu solusinya adalah menggunakan bioplastik. Penelitian ini menggunakan pati kulit pisang tanduk dan cavendish sebagai bahan baku utama pembuatan bioplastik. Pati terlebih dahulu diekstrak dari kulit pisang tanduk dan cavendish, lalu dicampur dengan zat aditif lainnya seperti gliserol dan sorbitol yang bertindak sebagai pemlastis. Penelitian ini dilakukan bermula dari permasalahan terkait pemberian pemlastis gliserol dan sorbitol serta pemanfaatan pati dengan kadar tertentu agar didapatkan formulasi terbaik dalam meningkatkan sifat fisik dan mekanik bioplastik. Pencampuran antara kedua pemlastis tersebut dilakukan dengan rasio konsentrasi 2:1 (v/v) serta perlakuan yang sama dalam mengekstraksi pati dari kulit pisang. Besar konsentrasi pemlastis yang digunakan sebesar 35% (v/v) dan 70% (v/v) sebanyak 2 ml, serta komposisi massa pati sebesar 3 gram. Hasil uji kadar pati dengan metode Luff Schoorl menunjukkan kadar pati kulit pisang tanduk lebih besar 3% dibandingkan pati kulit pisang cavendish pada usia yang diperkirakan serupa berdasarkan warna kulitnya. Dari uji FTIR ditunjukkan bahwa tiap sampel memiliki gugus fungsi yang terbilang cukup serupa satu sama lain. Sifat fisik diukur dengan beberapa parameter yang saling berkaitan satu sama lain, antara lain ketebalan, daya serap terhadap air, serta biodegradabilitas, dimana sifat fisik terbaik dimiliki oleh sampel S70C. Meskipun hasil ketebalan tidak menunjukkan perbedaan yang signifikan, namun sifat daya serap air menunjukkan sampel S70C serta S70T adalah yang paling rendah, serta biodegradabilitas sampel S70C merupakan yang paling baik, dinilai dari konsistensi kehilangan massanya saat dilalui proses penguburan dalam tanah kompos. Sifat mekanik diukur dengan parameter kekuatan tarik dan elongasi saat putus, dimana nilai kuat tarik terendah pada sampel S35T (0,09 N/mm2) serta yang tertinggi pada sampel S35C (0,23 N/mm2), diikuti oleh S70T (0,21 N/mm2) dan S70C (0,19 N/mm2). Persen elongasi tertinggi pada sampel S70C sebesar 12,83% dan terendah pada S35T sebesar 6,99%. Hasil uji SEM menunjukkan adanya tekstur yang halus hingga sama sekali kasar atau kurangnya kemerataan bahan pembentuk sampel
The need for food packaging media is increasing along with the era of technological disruption, in line with the increasing acts of environmental pollution that are fairly uncontrolled. One solution is to use bioplastics. This study used banana peel starch and cavendish as the main raw materials for making bioplastics. Starch is first extracted from tanduk and cavendish banana peel, then mixed with other additives such as glycerol and sorbitol which act as a plasticizer. This research was conducted starting from problems related to the provision of glycerol and sorbitol plasticizers as well as the use of starch with certain levels in order to obtain the best formulation in improving the physical and mechanical properties of bioplastics. The mixing between the two plasticizers was carried out with a concentration ratio of 2:1 (v/v) as well as the same treatment in extracting starch from banana peels. The concentration of plasticizer used was 35% (v/v) and 70% (v/v) of 2 ml, as well as a starch mass composition of 3 grams. The results of the starch content test with the Luff Schoorl method showed that the starch content of the tanduk banana peel was 3% greater than that of cavendish banana peel starch at a similar age based on the skin color. From the FTIR test, it is shown that each sample has functional groups that are quite similar to each other. Physical properties are measured by several parameters that are interrelated with each other, including thickness, absorption of water, and biodegradability, where the best physical properties are possessed by the S70C sample. Although the thickness results did not show a significant difference, the nature of water absorption showed that S70C and S70T samples were the lowest, and the biodegradability of S70C samples was the best, judged by the consistency of losing mass when going through the burial process in compost soils. Mechanical properties are measured by the parameters of tensile strength and elongation at break, where the lowest tensile strength value in the S35T sample (0,09 N/mm2) and the highest in the S35C sample (0,23 N/mm2), followed by S70T (0,21 N/mm2) and S70C (0,19 N/mm2). Percent of elongation was highest in the S70C sample at 12,83% and lowest in the S35T at 6,99%. SEM test results show the presence of a smooth to completely rough texture or lack of evenness of the sample forming material."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library