Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2 dokumen yang sesuai dengan query
cover
Bimo Ary Pujangga Putra
Abstrak :
ABSTRAK
Plastik sebagai bahan kemasan dan coating mengalami peningkatan global setiap tahun. Ini menimbulkan masalah serius bagi lingkungan karena sulitnya terdegradasi. Salah satu solusi untuk mengatasi masalah limbah plastik adalah penggunaan bioplastik. Untuk meningkatkan sifat mekanik dari bioplastik, biokomposit yang dibuat dengan penambahan aditif dan pengisi tertentu. Tujuan dari penelitian ini adalah untuk mengetahui pengaruh Butil Benzyl Phthalate plasticizer BBP dan Seng Oksida ZnO nanopartikel terhadap sifat mekanik dan termal biokomposit selulosa asetat butirat CAB / organoclay.Nanopartikel ZnO disintesis dari prekursor ZnO komersial melalui metode reduksi ukuran sol-gel menggunakan asam sitrat. Seng sitrat dikalsinasi pada suhu 600oC. ZnO nanopartikel dengan ukuran rata-rata 44,4 nm diperoleh pada rasio seng nitrat 1:2 terhadap asam sitrat. Film biokomposit dibuat dengan menggunakan metode solution casting dengan aseton sebagai pelarut. Penambahan plasticizer BBP dan nanopartikel ZnO sebesar masing-masing 30 dan 10 membuat biokomposit memiliki nilai kekuatan tarik 2,22 MPa. Pergeseran nilai suhu transisi gelas Tg selulosa asetat butirat tidak dapat terlihat dikarenakan homogenitas biokomposit saat proses casting.
ABSTRACT
Plastics as packaging materials and coatings have increased globally every year. This poses a serious problem for the environment because of the difficulty to degrade. One solution to overcome the problem of plastic waste is the use of bioplastics. To improve the mechanical properties of bioplastics, biocomposites are fabricated with the addition of certain additives and fillers. The purpose of this study was to determine the effect of plasticizer Butyl Benzyl Phthalate BBP and Zinc Oxide ZnO nanoparticles to the mechanical and thermal properties of biocomposite cellulose acetate butyrate CAB organoclay.ZnO nanoparticles were synthesized from a commercial ZnO precursor through sol gel method to reduce the size using citric acid. Zinc citrate was calcined at a temperature of 600oC. ZnO nanoparticles with an average size of 44.4 nm were obtained at a mole ratio of zinc nitrate citric acid was 1 2. Biocomposite films were made by solution casting method using acetone as the solvent. The addition of plasticizer BBP and ZnO nanoparticles by 30 and 10 respectively in the biocomposites produced a tensile strength of 2,223 MPa. Shifting value of the glass transition temperature Tg of cellulose acetate butyrate could not been observed due to the homogeneity of the biocomposite during the process of casting.
2017
T48360
UI - Tesis Membership  Universitas Indonesia Library
cover
Achmad Nandang Roziafanto
Abstrak :
Serat alami menjadi alternatif yang menarik untuk serat sintetis dalam penerapannya pada struktur komposit polimer. Kelemahan yang melekat dalam serat alam dalam hal kandungan penyusunnya yaitu hemiselulosa, selulosa dan lignin yang dapat mengurangi kompatibilitasnya dengan matriks polimer sintetis. Isolasi selulosa dan modifikasi permukaan dari serat alam menggunakan perlakuan metode plasma sistem Glow Discharge Electrolysis Plasma (GDEP) yang ramah lingkungan memiliki potensi untuk meningkatkan kompatibilitas serat-matriks. Penelitian ini bertujuan untuk mencari modifikasi permukaan serat batang sorgum yang optimum melalui metode plasma sistem GDEP . Metode plasma sistem GDEP dilakukan dengan variasi waktu operasi, besaran tegangan, jenis elektrolit, dan volume reaktor untuk proses isolasi dan modifikasi permukaan selulosa. Untuk mengevaluasi tahapan-tahapan tersebut dilakukan karakterisasi terhadap serat menggunakan infra merah (FTIR), mikroskop elektron (FE-SEM), sinar-X (XRD), analisis termal (STA) dan sessile drop test. Serat batang sorgum hasil optimasi dari perlakuan GDEP dicampur dengan matriks polipropilena (PP) untuk pembuatan komposit dengan variasi fiber loading. Proses pencampuran dan pembuatan komposit menggunakan alat ekstruder twin screw. Struktur serat dan analisis morfologi menunjukkan bahwa komposisi lignin menurun setelah serat mendapatkan perlakuan GDEP dengan proses optimum menggunakan elektrolit NaCl 0,07 M tegangan 600V reaktor 250 mL selama 15 menit. Hasil ini diperkuat dengan data hasil uji XRD yang mengungkapkan bahwa fraksi kristalin serat batang sorgum meningkat setelah mendapatkan perlakuan GDEP dengan nilai optimum 59,87%. Analisis termal mengungkapkan bahwa serat setelah perlakuan GDEP memiliki stabilitas termal yang lebih tinggi dibandingkan sebelum perlakuan dengan nilai optimum Td1 323,48oC dan Td2 365,59oC. Pada serat setelah perlakuan GDEP terdapat fenomena terbentuknya senyawa stabil pseudo lignin yang bersifat hidrofobik. Perlakuan GDEP mampu secara efektif mengeliminir 37,28% lignin pada serat sekaligus memodifikasi permukaan serat menjadi lebih hidrofobik dalam satu langkah jika dibandingkan dengan metode konvensional (kimia/alkalinisasi). Keseluruhan sifat tarik komposit PP diperkuat serat hasil perlakuan GDEP meningkat jika dibandingkan dengan serat tanpa perlakuan dengan nilai optimum pada penambahan 5 phr sebesar 32,19 MPa. Penelitian ini juga menunjukkan bahwa semakin tinggi fiber loading MFC dalam matriks PP kekuatan tarik komposit menjadi menurun dan nilai modulus Young’s-nya meningkat. ......Recently, natural fibers have become an interesting alternative to synthetic fibers in their application in polymer composite structures. Inherent weaknesses in natural fibers regarding their constituent content (hemicellulose, cellulose, and lignin) reduce the compatibility of these fibers with synthetic polymer matrices. Surface modification of fibers using the Glow Discharge Electrolysis Plasma (GDEP) method, an environmentally friendly treatment, has the potential to enhance fiber-matrix compatibility. This research aims to find the optimum surface modification of sorghum fibers through the GDEP method. The GDEP method is carried out with variations in operation time, voltage, electrolyte type, and reactor volume for the isolation and surface modification of cellulose. To evaluate these stages, fiber characterization is performed using infrared (FTIR), electron microscopy (FE-SEM), X-ray (XRD), thermal analysis (STA), and sessile drop test. The optimum sorghum stem fiber resulting from the GDEP treatment is mixed with polypropylene (PP) matrix to produce composites with varying fiber loading. The mixing and composite fabrication process utilizes a twin-screw extruder. The fiber structure and morphological analysis reveal that lignin composition decreases after GDEP treatment with the optimum process using 0.07 M NaCl electrolyte, 600V voltage, and 250 mL reactor for 15 minutes. This is supported by XRD data indicating a 59.87% increase in the crystalline fraction of sorghum stalk fibers after GDEP treatment. Thermal analysis shows that GDEP-treated fibers exhibit higher thermal stability compared to untreated fibers, with optimum values of Td1 at 323.48°C and Td2 at 365.59°C. GDEP treatment results in the formation of hydrophobic pseudo-lignin compounds on the fiber surface. Effectively, GDEP treatment eliminates 37.28% of lignin in fibers while simultaneously modifying the fiber surface to be more hydrophobic in a single step compared to conventional (chemical/alkaline) methods. Overall, the tensile properties of PP composites are strengthened with GDEP-treated fibers, with an optimum increase of 32.19 MPa at a 5 phr addition. The study also indicates that as the fiber loading of MFC in the PP matrix increases, the tensile strength of the composite decreases, and the Young's modulus value increases.
Depok: Fakultas Teknik Universitas Indonesia, 2024
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library