Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2 dokumen yang sesuai dengan query
cover
Elke Annisa Octaria
"

Triclustering merupakan teknik analisis pada data 3D yang bertujuan untuk mengelompokkan data secara bersamaan pada baris dan kolom di sepanjang waktu/kondisi yang berbeda. Hasil dari teknik ini disebut dengan tricluster. Tricluster merupakan subruang berupa subset dari baris, kolom, dan waktu/kondisi. Triclustering biasanya digunakan untuk menganalisis data ekspresi gen. Studi dan analisis data ekspresi gen selama perkembangan suatu penyakit merupakan masalah penelitian yang penting dalam bioinformatika dan aspek klinis. Oleh karena itu, penelitian ini mengimplementasikan metode THD-Tricluster dengan new residue score pada data ekspresi gen perkembangan penyakit HIV-1 yang terdiri dari 22283 probe id, 40 observasi, dan 4 kondisi. Pada tahap pertama dilakukan pencarian bicluster dengan lift algorithm berdasarkan nilai new residue score dengan threshold . Pada tahap kedua dilakukan pencarian tricluster dengan menentukan minimum probe dan minimum observasi  sehingga memperoleh 33 tricluster. Hasil evaluasi tricluster menggunakan Inter-temporal Homogeneity dengan threshold  diperoleh 32 tricluster yang menunjukkan 3 gen yang terkait dengan HIV-1 yaitu HLA-C, ELF-1, dan JUN.


Triclustering is an analysis technique on 3D data that aims to group data simultaneously on rows and columns across different times/conditions. The result of this technique is called a tricluster. Triclusters are a subspace consisting of a subset of rows, columns, and time/conditions. Triclustering is commonly used to analyze gene expression data. The study and analysis of gene expression data during disease progression is an important issue in the research of bioinformatics and clinical aspects. Therefore, this study implements the THD-Tricluster method with a new residue score on the gene expression data for HIV-1 disease progression consisting of 22283 probe id, 40 observations, and 4 conditions. In the first stage, a bicluster search was carried out with a lift algorithm based on the new residue score with a threshold of I = 0.08. In the second stage, the tricluster search was carried out by determining the minimum probe = 5 and the minimum observation = 2 to obtain 33 triclusters. The results of the tricluster evaluations using Inter-temporal Homogeneity with a threshold of Ï? = 0.8 obtained 32 triclusters which shows 3 genes related to HIV-1, namely HLA-C, ELF-1, and JUN.

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Achmad Eriza Aminanto
"Analisis biclustering merupakan pengembangan analisis clustering, dimana analisis biclustering merupakan proses partisi data matriks menjadi sub-matriks berdasarkan baris dan kolom secara simultan. Salah satu metode analisis bicluster yaitu dengan menggunakan model probabilistik, contohnya adalah Plaid model yang dapat memberikan hasil bicluster yang bersifat overlapping. Plaid model, memperhitungkan nilai elemen yang diberikan dari suatu sub-matriks tertentu, sehingga pada analisis biclustering dapat dilihat sebagai jumlah kontribusi atau efek dari bicluster tertentu. Tahapan analisis biclustering dengan plaid model diawali dengan input data berbentuk matriks, kemudian dilakukan penaksiran model awal dan membuat matriks residual dari model tersebut. Kemudian penentuan kandidat bicluster. Kandidat tersebut ditaksir parameter efeknya dan parameter keanggotaan bicluster. Terakhir dilakukan pemangkasan kandidat bicluster tersebut. Implementasi dilakukan pada data matriks ekspresi gen berupa data numerik yaitu data penyakit kanker usus, dimana baris berisikan observasi atau pasien sedangkan kolom berisikan jenis dari gen yang dilakukan dalam 6 skenario. Masing-masing skenario menggunakan parameter model dan nilai threshold berbeda. Validasi hasil implementasi menggunakan indeks Jaccard yaitu kedektahan hasil anggota bicluster dan variansi koherensi. Hasil implementasi menunjukkan penggunaan model yang lebih sederhana yang hanya menggunakan efek mean memberikan variansi koherensi yang lebih tinggi dibandingkan penggunaan model yang berisi mean, efek baris, dan efek kolom dari bicluster.

Biclustering analysis is the development of clustering analysis, which is the process of partitioning matrix data into sub-matrices based on rows and columns simultaneously. One method of bicluster analysis is using probabilistic model, for example the Plaid model that provide overlapping bicluster. Plaid model, calculates the value of an element given from a particular sub-matrix, thus can be seen as number of contributions of particular bicluster. The process begins with matrix data input, then an initial model is assessed and makes a residual matrix from the model. Then determining bicluster candidates. The candidate assessed for its effect parameters and bicluster membership parameters. Finally, the bicluster candidate was prunned. The implementation is carried out on the gene expression matrix data in form of numerical data, namely colon cancer data, where the rows contain observations while the columns contain the types of genes carried out in 6 scenarios. Each scenario uses different model parameters and threshold values. Validation of the implementation results using Jaccard index and coherence variance. Implementation results show that simpler model which only uses mean effect gives higher coherence variance than using model that contains mean, row, and column effect of the bicluster."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library