Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 5 dokumen yang sesuai dengan query
cover
Tansa Qurrota A`Yuna
"Google mampu meningkatkan keuntungan hingga $200 juta dengan melakukan sebuah eksperimen di mana mereka menguji beberapa warna biru pada tulisan iklan di tampilan website nya. Namun demikian, dalam menemukan tampilan website yang memberikan performa terbaik dari jutaan pengunjung tidaklah mudah. Salah satu kriteria bahwa sebuah website memiliki performa yang baik adalah dengan tingginya click through rate yang dimiliki website tersebut. Untuk menangani permasalahan ini, salah satu metode yang dapat digunakan adalah A/B testing. Cara A/B testing bekerja adalah  dengan membagi pengunjung laman website menjadi dua kelompok; treatment group dan control group. Masing-masing kelompok akan disajikan varian laman website yang berbeda. Respons dari pengunjung atas laman website kemudian dicatat dan diuji performa antara varian A dan varian B. Pada tahap pengujian, ada dua metode yang dapat digunakan yaitu frequentist dan Bayesian. Metode frequentist membuat prediksi hanya menggunakan data yang ada dari percobaan yang dilakukan. Sedangkan metode Bayesian menggunakan prior yang akan akan diperbarui seiring dengan bertambahnya data yang diterima. Output dari metode Bayesian A/B testing berupa keyakinan akan rentang nilai sebenarnya dari click through rate. Keyakinan ini dituangkan dalam bentuk distribusi posterior. Dari penelitian yang dilakukan, diperoleh hasil bahwa metode Bayesian A/B testing  mampu memberikan inferensi yang cukup baik meskipun dengan pemilihan prior yang tidak informatif. Dari hasil tersebut, maka sebuah perusahaan bisa memanfaatkan metode ini menguji tampilan laman website.

Google was able to increase profits by up to $200 million by conduction experiments where they tested some shades of blue of the advertisement link in their website display. However, finding the website display which provides the best performance from millions of visitors is not easy. One of the criteria that a website has a good performance is that it has a high number of click through rate. To solve this problem, one of the method that can be used is A/B testing. A/B testing works by dividing the website visitors into two groups; treatment group and control group. Each group will be presented with different website page variants. The responses from visitors are recorded and tested for knowing which variant performs better. At the testing stage, there are two methods that can be used, frequentist and Bayesian. The frequentist method makes predictions using only the data available from the experiments. While the Bayesian method uses priors that will be updated as the data is received. The output from Bayesian A/B testing method is a belief of range from the actual value of click through rate. This belief is expressed in the form of posterior distribution. From this research, Bayesian A/B testing method is able to provide quite good inference even though we select a non informative prior. From this result, a company can apply this method to test the website display."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mochamad Ivan Janitra Rama
"Distribusi Weibull digunakan untuk menyelesaikan masalah-masalah yang menyangkut lama waktu suatu objek yang mampu bertahan hingga akhirnya objek tersebut tidak berfungsi (dengan kata lain rusak atau mati). Distribusi Weibull merupakan salah satu solusi untuk masalah fleksibilitas yang tidak dimiliki oleh distribusi Exponensial, yaitu hanya memiliki bentuk fungsi hazard yang konstan. Dalam melakukan inferensi dari kasus yang dimodelkan dengan distribusi Weibull, perlu dilakukan penaksiran terhadap parameternya. Distribusi Weibull dua parameter memiliki parameter skala dan parameter shape. Pada skripsi ini, akan dilakukan penaksiran parameter skala dari distribusi Weibull pada data terpancung kiri dan tersensor kanan dengan asumsi bahwa parameter shape diketahui menggunakan metode Bayesian. Prosedur dalam penaksiran parameter meliputi penentuan distribusi prior, fungsi dan distribusi posterior. Kemudian penaksir titik Bayes diperoleh dengan meminimumkan ekspektasi dari fungsi. Fungsi yang digunakan adalah Squared Error Loss Functio (SELF) dan Precautionary Loss Function (PLF). Kemudian dilakukan simulasi data untuk membandingkan nilai Mean Squared Error (MSE) dari taksiran parameter skala menggunakan fungsi. Hasil simulasi menunjukan bahwa taksiran parameter menggunakan fungsi memiliki nilai MSE yang lebih kecil untuk parameter skala lebih kecil atau sama dengan satu sedangkan taksiran parameter menggunakan fungsi PLF memiliki nilai MSE yang lebih kecil untuk parameter skala lebih besar daripada satu.

Weibull distribution is used to solve problems that involve the length of time an object is able to survive until the object is not function (in other words damaged or dead). Weibull distribution is one of many solutions to the flexibility problem that is not owned by an Exponential distribution, which only has the form of a constant hazard function. In making inferences from cases modeled with the Weibull distribution, it is necessary to estimate the parameters. The two-parameter Weibull distribution has a scale parameter and a shape parameter. In this thesis, the scale parameter of the Weibull distribution will be estimated on left truncated and right censored data assuming that the shape parameter are known using Bayesian method. The procedure in parameter estimation includes the determination of the prior distribution, the likelihood function and the posterior distribution. Then the point estimator of the scale parameter is obtained by minimizing the expectation of loss function. The loss function used in this thesis are Squared Error Loss Function (SELF) and Precautionary Loss Function (PLF). Data simulation is done to compare the value of Mean Squared Error (MSE) from the estimated parameters using SELF and PLF. The simulation result shows that the estimated parameter using SELF has a smaller MSE value for scale parameter below or equal one while the estimated parameter using PLF has a smaller MSE value for scale parameter above one."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Monika Adhi Permata
"E-Learning Management Systems (EMAS) adalah sebuah platform belajar daring yang digunakan oleh Universitas Indonesia (UI). Dengan menggunakan platform EMAS, aktivitas akademik mahasiswa dapat dipantau. Berdasarkan aktivitas akademik mahasiswa, dimungkinkan untuk menentukan klasifikasi performa akademik mahasiswa. Aktivitas akademik yang dimaksud diantaranya adalah mahasiswa mengakses EMAS, mahasiswa mengerjakan quiz di EMAS, dan mahasiswa berpartisipasi forum di EMAS. Pada tugas akhir ini digunakan model klasifikasi Naïve Bayes, yaitu klasifikasi dengan asumsi kondisi antar fitur adalah saling bebas. Hasil performa model dilihat dari nilai Matthew’s Correlation Coefficient (MCC) terbesar. Sebelum implementasi, ditentukan proporsi data training dan data testing terbaik. Proporsi 80%:20% dengan periode data 4 minggu adalah proporsi dengan nilai MCC terbesar, yaitu 0,4745. Metode Mutual Information menghasilkan tujuh fitur terpilih, yaitu banyaknya tugas yang diunggah, banyaknya materi yang dikunjungi, banyaknya kunjungan ke start quiz, banyaknya quiz yang diunggah, banyaknya materi dokumen yang dikunjungi, banyaknya forum yang dikunjungi, dan lamanya durasi mengerjakan quiz. Dengan 7 fitur terpilih, performa model naik sebesar 15,15%, dan performa model meningkat lagi sebesar 26,5% jika dilakukan oversampling dengan metode Synthetic Minority Oversampling Technique. Hasil prediksi dari 47 mahasiswa adalah 43 mahasiswa diprediksi benar lulus, 2 mahasiswa diprediksi benar tidak lulus, dan 2 mahasiswa yang diprediksi salah yaitu mahasiwa diprediksi tidak lulus namun sebenarnya lulus.

E-Learning Management Systems (EMAS) is an online learning platform that used by the University of Indonesia (UI). By using the EMAS platform, student academic activities can be monitored. Based on the student's academic activities, it is possible to determine the classification of student academic performance. The academic activities in question include students accessing EMAS, students taking quizzes at EMAS, and students participating in forums at EMAS. In this final project, the Naïve Bayes classification model is used, namely classification with the assumption that the conditions between features are independent of each other. The results of the model's performance are seen from the largest Matthew's Correlation Coefficient (MCC). Prior to implementation, the proportion of the best training and testing data is determined. The proportion of 80%:20% with a data period of 4 weeks is the proportion with the largest MCC value, which is 0.4745. The Mutual Information method resulted in seven selected features, namely the number of tasks uploaded, the number of materials visited, the number of visits to the quiz start, the number of quizzes uploaded, the number of document materials visited, the number of forums visited, and the length of duration of taking the quiz. With 7 selected features, the performance of the model increases by 15.15%, and the performance of the model increases again by 26.5% if oversampling is carried out using the Synthetic Minority Oversampling Technique method. The prediction results from 47 students were 43 students were predicted to pass correctly, 2 students were predicted to fail correctly, and 2 students were predicted to be wrong, namely students predicted not to pass but actually passed."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rifqi Wazirsyah
"E-Learning Management System (EMAS) merupakan aplikasi yang dibuat oleh Universitas Indonesia dengan berbagai fitur salah satunya forum diskusi online. Dalam forum diskusi online, mahasiswa dapat membuat postingan-postingan dalam bentuk teks untuk bisa berdiskusi. Postingan-postingan dalam bentuk teks memiliki peran penting dalam meningkatkan performa mahasiswa yang terkhusus pada kelulusannya. Pada tugas akhir ini, Multinomial Naïve Bayes (MNB) digunakan untuk mengklasifikasi performa mahasiswa berdasarkan postingan-postingan dalam bentuk teks pada forum diskusi online. Sebelum dilakukan tahapan klasifikasi, postingan-postingan tersebut dilakukan preprocessing dan pemberian bobot kata pada teks menggunakan TF-IDF. Hasil TF-IDF dinyatakan dalam bentuk vektor-vektor, proses ini disebeut dengan proses vektorisasi. Banyaknya dokumen dari data hasil vektorisasi TF-IDF yang digunakan yaitu sebanyak 228, dengan proporsi mahasiswa lulus dan tidak lulus secara berturut-turut, yaitu sebesar 219 dan 9. Pada data tersebut didominasi oleh mahasiswa lulus, artinya data tersebut tidak seimbang, sehingga diperlukan proses SMOTE untuk menyeimbangkan data. Kemudian, dilakukan implementasi model MNB pada 3 kasus pembagian data training dan data testing, yaitu 70%;30%, 80%:20% dan 90%:10%, dengan cara melatih model pada data training dan menguji model pada data testing untuk memperoleh klasifikasi performanya. Implementasi dilakukan sebanyak lima kali percobaan, sehingga didapatkan model MNB dapat mengklasifikasi performa mahasiswa dengan baik dan hasil kinerja model terbaik pada data testing 30% yaitu rata-rata akurasi sebesar 0,956, rata-rata recall sebesar 0,979, dan rata-rata f1-score sebesar 0,977. Namun rata-rata presisi terbaik didapatkan pada data testing 20%, yaitu sebesar 0,977.

E-Learning Management System (EMAS) is an application created by the University of Indonesia with various features, one of which is an online discussion forum. In online discussion forums, students can make posts in the form of text to be able to discuss. Posts in the form of text have an important role in improving student performance, especially at graduation. In this final project, Multinomial Naive Bayes (MNB) is used to classify student performance based on posts in text form on online discussion forums. Prior to the classification stage, the posts were preprocessed and assigned word weights to the text using TF-IDF. The results of TF-IDF are expressed in the form of vectors, this process is called the vectorization process. The number of documents from the TF-IDF vectorized data used is 228, with the proportion of students graduating and not graduating respectively, which is 219 and 9. SMOTE to balance data. Then, the implementation of the MNB model was carried out in 3 cases of distribution of training data and testing data, namely 70%; 30%, 80%:20% and 90%:10%, by training the model on the training data and testing the model on the testing data to obtain performance classification. The implementation was carried out five times, so that the MNB model was able to classify student performance well and the best model performance results were on 30% testing data, namely an average accuracy of 0.956, an average recall of 0.979, and an average f1-score of 0.956. 0.977. However, the best average precision was obtained at 20% testing data, which was 0.977."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nalendra Dwimantara
"

Kambuhnya kanker payudara bergantung pada stadium tumor awal, terapi yang dilakukan sebelumnya, dan tumor biologi. Pengukuran darah lengkap merupakan salah satu pemeriksaan laboratorium yang relatif murah, mudah dan efektif dalam mendiagnosis kanker. Analisis regresi kesulitan dalam membuat kesimpulan dari data yang mengandung sejumlah besar variabel penjelas yang saling berkorelasi. Profile regression mengadopsi sudut pandang yang lebih global, dimana kesimpulan didasarkan pada kelompok yang mewakili pola variabel penjelasnya. Pengelompokan dilakukan untuk menganalisis suatu data dengan melihat karakteristik tiap pengamatan pada data. Suatu data jika dibagi menjadi beberapa kelompok mengartikan data tersebut memiliki karakteristik pengamatan yang berbeda-beda. Analisis pada data yang heterogen bertujuan untuk mengidentifikasi subpopulasi yang homogen dan menentukan hubungan antar variabel dalam setiap subpopulasi. Finite Mixture Model (FMM) dengan pendekatan Bayesian digunakan untuk mengidentifikasi subpopulasi dari pasien kanker payudara berdasarkan pengukuran darah. Berdasarkan nilai Deviance Information Criterion (DIC) didapatkan bahwa subpopulasi yang terbentuk untuk data rasio pengukuran darah pasien kanker payudara adalah dua subpopulasi. Peluang pasien mengalami kekambuhan pada subpopulasi 1 sebesar 35% dan 72% pada subpopulasi 2. Sedangkan subpopulasi yang terbentuk untuk data inter-rasio pengukuran darah pasien kanker payudara yang terbentuk adalah dua subpopulasi. Peluang pasien mengalami kekambuhan pada subpopulasi 1 sebesar 9% dan 3% pada subpopulasi 2.


Recurrence of breast cancer depends on the initial tumor stage, previous therapies, and biological tumors. A complete blood test is one of the relatively inexpensive, easy and effective laboratory tests in diagnosing cancer. Simple regression analysis has difficulties in drawing conclusions from data that contain large numbers of explanatory variables that are correlated.  Profile regression adopts a more global perspective, where conclusions are based on groups representing covariate patterns. Clustering method aims to analyze data by looking at the characteristics of each observation in the data. If the data is divided into groups, that means that the data has different observational characteristics. Analysis of heterogeneous data purposes to identify homogeneous subpopulations and determine the relationships between variables in each subpopulation. Finite Mixture Model (FMM) with Bayesian approach is used to identify subpopulations of breast cancer patients based on blood measurements. Based on the value of the Deviance Information Criterion (DIC), it was found that the number of subpopulations formed for the data of the ratio of blood measurements for breast cancer patients are two subpopulations.  The probability of patients experiencing recurrence in subpopulation 1 was 35% and 72% in subpopulation 2. Whereas the number of subpopulations formed for the data of the inter-ratio data of breast cancer patients formed are also two subpopulations.  The probability of patients experiencing recurrence in subpopulation 1 is 9% and 3% in subpopulation 2.

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library