Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 7 dokumen yang sesuai dengan query
cover
Nathaniel Nicholas Norvin Lambok Mangatas
Abstrak :
Pengukuran antena dilakukan dengan tujuan untuk mengetahui karakteristik radiasi sebuah antena, dengan proses pengukuran dilakukan di ruang laboratorium Prof. Fitri Yuli Zulkifli di DTE Universitas Indonesia. Proses pengukuran masih dilakukan secara manual dan beberapa parameter seperti pola radiasi membutuhkan waktu yang cukup lama untuk melakukan pengambilan data. Dengan demikian, dibutuhkan sistem pengukuran antena secara otomatis yang dapat mengendalikan instrumen pengukuran antena yang sudah tersedia untuk mempermudah proses pengambilan data untuk pengukuran antena. Dalam penelitian ini, dirancang sistem pengukuran karakterisasi antena secara otomatis dengan menggunakan library libFTDI dan R&S VISA untuk mengendalikan instrumen pengukuran Vector Network Analyzer (VNA ) dan rotator antena. Hasil implementasi dan pengujian aplikasi menunjukkan bahwa sistem pengukuran yang diajukan dapat mempermudah dan mempersingkat proses pengukuran antena dimana hasil pengukuran pola radiasi pada tahapan sudut 10 dan 5 derajat berturut-turut membutuhkan waktu 3 dan 5 menit. ......Antenna measurements are conducted to determine radiation characteristics of the antenna. Measurements conducted in Prof. Fitri Yuli Zulkifli laboratory DTE Uniiversity of Indonesia is still done manually, and some parameter such as radiation pattern is labor-intensive and takes a lot of time to collect the data required. An automated measurement system required to control instrument measurements in the laboratory to measure radiation characteristics of the antenna automatically. This research proposed an automatic antenna radiation characteristics measurement system with libFTDI and R&S VISA library used to control and communicates Vector Network Analyzer (VNA) and antenna rotator. The result showed that the proposed system could facilitate users to measure antenna under test, where the measurement results of radiation pattern at 10 and 5 degrees respectively takes 3 and 5 minutes to run.
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Wahyu Kuncoro Adhi
Abstrak :
Berbagai macam tindak terorisme telah terjadi di antara umat manusia. Kamera keamanan untuk mendeteksi bahan-bahan berbahaya dikembangkan manusia untuk mencegah terjadinya tindak terorisme. Teknologi yang sudah ada seperti kamera sinar X memiliki kelemahan yaitu efek samping yang berbahaya bagi tubuh manusia. Untuk itu, manusia mengembangkan teknologi kamera dengan menggunakan rentang Terahertz. Rentang yang digunakan adalah inframerah dan gelombang Terahertz 0.3 - 5 Thz. Inframerah digunakan untuk mendeteksi benda asing yang diselipkan pada tubuh manusia, sedangkan rentang gelombang Terahertz digunakan untuk mendeteksi material berdasarkan proses spektroskopi. Mikrobolometer digunakan untuk mendeteksi gelombang inframerah. Sedangkan antena Terahertz digunakan untuk mendeteksi frekuensi gelombang antara 0.3 sampai 5 Thz. Penelitian ini bertujuan untuk mengabungkan dan mengintegrasikan mikrobolometer dengan antena Terahertz. Kedua komponen ini digunakan secara terpisah namun dalam satu struktur. Sensor diharapkan akan menjadi lebih murah dengan hasil yang cukup baik. Metode yang digunakan adalah simulasi dan menganalisa hasil dan nilai-nilai parameter yang penting. Desain baru antena mikrobolometer yang digandeng dengan antena Teraherzt memilki penyerapan inframerah yang lebih kecil dibandingkan dengan mikrobolometer tanpa antena. Namun desain baru memiliki keunggulan yaitu mampu mendeteksi gelombang Thz 1.96 sampai 1.97 Thz dan inframerah. Desain juga memiliki waktu siklus yang singkat dan dapat digunakan untuk aplikasi kamera tepat waktu anti terorisme. ......A wide range of acts of terrorism have occurred among mankind. Security camera is used to detect dangerous materials, is developed in order to prevent acts of terrorism. Existing technologies such as X-ray camera has the disadvantage such of its side effects that are harmful to the human tissue. Because of that, people are developing the camera technology using the terahertz range. Range used is infrared and terahertz waves 0.3 - 5 Thz. Infrared is used to detect foreign objects which are inserted in the human body and Terahertz waves are used to detect material from spectroscopy process. Microbolometer used to detect infrared waves. While the antenna is used to detect terahertz waves frequency between 0.3 to 5 Thz. This study has purpose to combine and integrate microbolometer with terahertz antenna. Both of these components are used separately but within in one structure. Sensors are expected to become cheaper with good results. The method is simulate and analyze result and important parameter. The new antenna coupled microbolometer design has infrared absorption smaller than microbolometer without antenna. But, new design has the advantage which are capable of detecting Thz frequency from 1.96 to 1.97 Thz and Infrared. Design has short cycle time so it can be used to real time camera for antiterorism application.
Depok: Fakultas Teknik Universitas Indonesia, 2013
T34961
UI - Tesis Membership  Universitas Indonesia Library
cover
Sirait, Dony Canisius
Abstrak :
Radio Frequency Identification (RFID) adalah salah satu teknologi yang sedang berkembang dan telah digunakan dalam berbagai bidang kehidupan termasuk dalam bidang kesehatan, salah satunya adalah untuk aplikasi monitoring pasien. Sistem RFID terdiri dari tag yang akan diimplan ke dalam tubuh manusia dan reader yang akan ditempatkan disalah satu sudut ruangan. Penggunaan tag dalam tubuh dimaksudkan untuk mengurangi resiko kehilangan tag, tidak terlihat dan cocok untuk pasien yang kurang kooperatif. Antena tag RFID yang dirancang digunakan untuk aplikasi medis dengan frekuensi 923-924 MHz, dan diimplan dibagian lengan atas manusia. Tag RFID diimplan diantara lapisan kulit dan lapisan lemak dari lengan manusia. Tag antena memiliki gain sebesar -19,87dBi. Antena yang akan dirancang bangun adalah berupa antena dipole yang dibuat dari kombinasi helix dan folded yang akan diimplan di dalam tubuh setelah dibungkus dengan silika terlebih dahulu guna mengurangi efek radiasi ke tubuh.. Untuk mengetahui karakteristik antena pada saat diimplan pada tubuh manusia, digunakan media phantom berupa liquid phantom sebagai media validasi. Antena setelah disimulasi dengan model lengan manusia di frekuensi 924 MHz memiliki bandwidth 854,68 - 990,34 MHz. Antena setelah diukur di dalam liquid phantom memiliki bandwidth 908 - 997 MHz. Pola radiasi dari antena dipole ini dapat dilihat secara simulasi berdasarkan sudut elevasi pada bidang YZ, XY dan XZ. Namun, pada saat pengukuran, arah dan sudut elevasi dari pola radiasi dilihat hanya pada bidang XY.
Radio Frequency Identification (RFID) is one of the developed technologies which is used in several applications, including for medical field applications such as patient monitoring purpose. The RFID system is consisted of a medical tag that is implanted into the human body and a reader unit that is installed in one of the room's corner. The use of the implanted tag is intended to reduce the risk of the tag being lost, it is invisible and ideal for noncooperative patients. RFID tag antenna is designed to be used in medical aplications with frequency of 923 -925 MHz and implanted in human’s upper arm. The RFID is designed to be tag implanted between layers of skin and fat layer of human arm. The tag antenna has a gain of - 19.87 dBi. The antenna is a modified dipole antenna with combination of helix and folded dipole antenna and will be implanted in the body after it is wrapped with silica to reduce the effects of radiation to the human body. To determine the characteristics of the antenna when implanted in the human body, the media used is in the form of a liquid phantom as validation media. The antenna after simulated by the model of the human arm in frequency 924 MHz, has a bandwidth from 854.68 – 990.34 MHz. This modified dipole has been measured in liquid phantom with bandwidth from 908 - 997 MHz. The radiation pattern from this antenna in simulated based on elevation angle in plane YZ, XY and XZ. However, for the radiation pattern measurement, the direction and elevation angle are measured only in the XY plane.
Depok: Fakultas Teknik Universitas Indonesia, 2013
T35785
UI - Tesis Membership  Universitas Indonesia Library
cover
Anggy Pradiftha Junfithrana
Abstrak :
Antena merupakan elemen fundamental dalam sistem komunikasi nirkabel. Sebagai sebuah konduktor, antena akan mengubah gelombang listrik menjadi gelombang elektromagnetik yang diradiasikan diudara maupun sebaliknya. Kinerja sebuah antena ditentukan oleh karakteristik radiasi yang dihasilkan meliputi pola radiasi, gain, direktivitas, polarisasi, impedansi, VSWR, dan bandwidth. Pengukuran antena dilakukan dengan tujuan untuk mengetahui karakteristik radiasi sebuah antena. Proses pengukuran pola radiasi dan gain antena di ruang Anechoic chamber DTE Universitas Indonesia masih dilakukan secara manual, hal ini berakibat pada kecepatan proses pengukuran yang cukup lama dan ketelitian hasil pengukuran yang berbeda-beda untuk setiap pengukuran. Pada penelitian ini, dibangun sebuah sistem pengukuran karakteristik radiasi antena secara otomatis dengan menggunakan Network Analyzer HP8753E, rotator antena jenis Roll-Over-Azimuth, komputer dan sebuah program aplikasi. Rancang bangun rotator antena menggunakan mikrokontroler AT-Mega328 (Arduino) sebagai pengendali dua buah motor stepper, dan pembuatan program aplikasi menggunakan software LabVIEW sebagai antarmuka dengan pengguna. Sistem diimplementasikan pada pengukuran antena jenis dipol, mikrostrip patch segi empat, dan mikrostrip array 4x1 elemen. Hasil penelitian menunjukkan bahwa sistem yang dibangun dapat memberikan hasil pengukuran yang lebih akurat, dengan mengurangi kesalahan pembacaan sudut pada rotator antena dan pembacaan nilai parameter S12/S21 pada Network Analyzer. Disamping itu, waktu pengukuran menjadi lebih cepat bila dibandingkan dengan pengukuran secara manual, dimana hasil pengukuran pola radiasi pada tahapan sudut 11,250, 4,50 ,dan 2,250 berturut-turut membutuhkan waktu 1, 2, dan 5 menit, sedangkan hasil pengukuran gain pada rentang sudut radiasi utama 360 membutuhkan waktu 4 menit. ......Antenna is a fundamental element in a wireless communication system. As a conductor, the antenna will change the electrical waves into electromagnetic waves and then radiated in the air. Performance of an antenna is determined by the characteristics of the resulting radiation including radiation pattern, gain, directivity, polarization, impedance, VSWR, and bandwidth. Antenna measurements are conducted in order to determine the radiation characteristics of an antenna. Measurement process of antenna radiation patterns and gain in Anechoic chamber DTE University of Indonesia is still done manually, therefore the measurement process takes longer time to finish and the measurement result can be not to accurate. In this research, constructed an automatically system to measure antenna radiation characteristics by using Network Analyzer HP8753E, antenna rotator Roll-Over-Azimuth, a computer and an application program. The Design of the antenna rotator is using AT- Mega328 microcontroller (Arduino) as controlling two stepper motors and application program using LabVIEW software as the interface with user. Implemented systems for measuring dipole antenna, rectangular microstrip patch, and 4x1 microstrip array elements. The results showed that the system could provide a more accurate measurement results, by reducing reading errors from antenna rotator angle, and parameter values on the Network Analyzer S12/S21. In addition, the measurement time is faster when compared to manual measurement, where the measurement results of phase angle radiation pattern at 11,250, 4,50, and 2,250 respectively takes 1, 2, and 5 minutes, while the gain measurements in the main radiation angle range 360 takes 4 minutes.
Depok: Fakultas Teknik Universitas Indonesia, 2013
T35152
UI - Tesis Membership  Universitas Indonesia Library
cover
Waldemar Banurea
Abstrak :

ABSTRAK
Tulisan ini bertujuan mendesain dan merealisasikan sebuah partotipe antena LPDA sambungan coaxial pada rentang frekuensi 400-890 Mhz, memberikan metode mengukur parameter-parameter antena seperti pola radiasi, direktivitas, gain, efisiensi total antena. Oleh karena antena LPDA didesain untuk pita lebar maka efesiensi total antena akan menurun dengan kenaikan frekuensi, untuk mengatasi penurunan efisiensi tersebut maka bentuk konstruksi dan perhitungan dimensi-dimensi fisik antena LPDA diaplikasikan cara menaikkan sudut puncak. Pada direktivitas tertentu yang didesain semakin lebar rentang frekuensi yang diinginkan maka panjang total dari struktur antena LPDA juga semakin panjang yang tentu saja menambah rugi-rugi ohmic yang diserap antena dan akan menurunkan efisiensi antena. Dari hasil pengukuran, bahwa antena dapat beroperasi pada rentang frekuensi 400 Mhz hingga 890 Mhz, untuk sudut a = 10 derajat menunjukkan efisiensi total antena lebih besar dari pada 90% untuk seluruh rentang frekuensi 400 Mhz hingga 90 Mhz dan untuk sudut a = 20 derajat menunjukkan afisiensi total antena lebih besar dari pada 400% untuk seluruh rentang frekuensi 400 Mhz hingga 890 Mhz.
Medan: Politeknik Negeri Medan, 2019
338 PLMD 22:3 (2019)
Artikel Jurnal  Universitas Indonesia Library
cover
Dinari Nikken Sulastrie Sirin
Abstrak :
Pemantauan perubahan cuaca dan iklim sebagai upaya untuk menanggulangi dan mengurangi dampak bencana, dapat dilakukan dengan memanfaatkan data satelit penginderaan jauh meteorologi. Antena mikrostrip yang memiliki karakteristik low profile, banyak diaplikasikan untuk komunikasi nirkabel, tidak terkecuali untuk penerimaan data satelit. Penelitian ini mengusulkan antena mikrostrip sederhana dengan metode truncated corner sebagai antena pencatu reflektor parabola untuk aplikasi satelit meteorologi Geo-Kompsat-2A pada frekuensi X-band. Simulasi dan parameterisasi desain antena dilakukan dengan menggunakan software CST Studio Suite. Desain single patch yang diusulkan selanjutnya dimodifikasi menjadi array 2x2, dan array 4x4. Hasil simulasi menunjukkan bahwa nilai parameter S11 dari ketiga desain secara berurutan yaitu -13,86 dB, -14,53 dB, dan -45,93 dB. Bandwidth desain single patch adalah 396 MHz dan lebih besar bila dibandingkan dengan bandwidth pada desain array. Beamwidth terbesar yaitu 93,7° dihasilkan oleh desain single patch, sedangkan gain terbesar dihasilkan oleh antena array 2x2, yaitu 8,6 dB. Ketiga desain antena yang dibuat tidak ada yang memenuhi polarisasi sirkular, dengan AR secara berurutan sebesar 38,67 dB, 40 dB, dan 16,54 dB. ......Monitoring of changes in weather and climate as an effort to overcome and reduce the impact of disasters, can be done by utilizing remote sensing satellite data from meteorology. Microstrip antenna which has a low profile characteristic, is widely applied for wireless communication, including satellite data reception. This study proposes a simple microstrip antenna with the truncated corner method as a parabolic reflector feed antenna for the application of the Geo-Kompsat-2A meteorological satellite at the X-band frequency. The simulation and parameterization of the antenna design was carried out using the CST Studio Suite software. The proposed single patch design then converts into a 2x2 array, and a 4x4 array. The simulation results show that the S11 parameter values ​​of the three designs sequentially are -13.86 dB, -14.53 dB, and -45.93 dB. The bandwidth of the single patch design is 396 MHz and is larger than the bandwidth of the array designs. The largest beamwidth is 93.7° generated by the single patch design, while the largest gain is generated by the 2x2 antenna array, which is 8.6 dB. There is no antenna design that fulfills circular polarization, with AR of 38.67 dB, 40 dB, and 16.54 dB respectively
Depok: Fakultas Teknik Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Dana, Roger A.
Abstrak :
This book fills in details that are often left out of modern books on the theory of antennas. The starting point is a discussion of some general principles that apply to all electronic systems and to antennas in particular. Just as time domain functions can be expanded in terms of sine waves using Fourier transforms, spatial domain functions can be expanded in terms of plane waves also using Fourier transforms, and K-space gain is the spatial Fourier transform of the aperture weighting function. Other topics discussed include the Discrete Fourier Transform (DFT) formulation of antenna gain and what is missing in this formulation, the effect of sky temperature on the often specified G/T ratio of antennas, sidelobe control using conventional and novel techniques, and ESA digital beamforming versus adaptive processing to limit interference.
Switzerland: Springer Nature, 2019;
e20508128
eBooks  Universitas Indonesia Library