Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 4 dokumen yang sesuai dengan query
cover
Yuliastuti
"Dalam rangka diversifikasi penggunaan energi, opsi energi nuklir telah masuk
dalam peta bauran energi tahun 2025. Penentuan dan persiapan lokasi (atau sering
disebut tapak) PLTN menjadi salah satu infrastruktur penting yang mempengaruhi
perkembangan implementasi program PLTN. Daerah yang akan dikaji dalam
penelitian ini terletak dalam wilayah Provinsi Banten. Daerah penelitian dapat
dikatakan merupakan daerah yang relatif aktif secara kegempaan baik yang
berhubungan dengan pensesaran maupun aktivitas vulkanik. Oleh karena itu,
analisis pensesaran permukaan yang mencakup identifikasi dan karakterisasi sesar
kapabel menjadi hal yang krusial untuk dikaji. Identifikasi sesar kapabel diperoleh
melalui analisis komprehensif dari data citra satelit SPOT-5, data observasi
geologi langsung dan data geofisika berupa data gravity, geolistrik dan
magnetotellurik. Berdasarkan hasil analisis morfostruktural citra satelit dan
observasi geologi langsung, di daerah penelitian terdapat sesar-sesar dengan
karakteristik dan kronologi dari tua ke muda yaitu sesar mendatar dekstral berarah
N1680E/860 dan mengindikasikan bahwa beberapa bidang sesarnya telah
teraktifkan kembali menjadi sesar normal berarah N1780E/680; sesar normal
berarah N3500 E/680; sesar normal berarah N2520E/700; dan sesar mendatar
sinistral berarah N130-1400 E/720-820. Keberadaan sesar-sesar tersebut secara
meyakinkan dikonfirmasi oleh hasil pemodelan dan inversi 2-dimensi gravity dan
geolistrik. Berdasarkan hasil inversi 2-dimensi data magnetotellurik, keberadaan
basement yang berumur Pre-Tersier berada pada kedalaman lebih dari 700 meter.
Sesar-sesar yang telah teridentifikasi, ditinjau dari umur batuan yang dipotongnya
yaitu lebih muda dari Middle Pliestocene, maka termasuk kategori sesar kapabel.

Abstract
In term of energy utilization diversification, nuclear energy has become an option
in energy mix of 2025. Nuclear power plant site preparation is one of the primary
issues in the development of nuclear energy program. The area of study is located
in Banten Province which is seismically active either related to faulting or
volcanic activity. Therefore, analysis of surface faulting which covered
identification and characterization of capable faults were crucial to investigate
further. Capable faults identification has been acquired through comprehensive
analysis of SPOT-5 satellite imagery, geological field observation data and
geophysical data which include gravity, geoelectric and magnetotelluric data.
Based on morfostructural analysis of satellite imagery and geological field
observation, it has been identified faults with characteristics and chronology
namely dextral strike-slip faults N1680E/860 indicating a reactivation into normal
faults N1780E/680; normal faults N3500 E/680; normal faults N2520E/700; and
sinistral strike-slip faults N130-1400 E/720-820. The existence of these faults has
been confirmed using 2-dimensional gravity and resistivity model and inversion.
Besides that, based on 2-dimensional magnetotelluric data inversion the presence
of Pre-Tertiary basement rock is indicated at depth of more than 700 meters. In
term of the rock ages, the identified faults were younger than Middle Pleistocene.
Accordingly, all the identified faults were categorized as capable faults."
Jakarta: Universitas Indonesia, 2012
T30981
UI - Tesis Open  Universitas Indonesia Library
cover
Sumirah
"Lintasan seismic BGR06-212 berarah Tenggara-Baratlaut berada di cekungan busurmuka Simeulue. Target penelitian adalah gas hidrat yang ditandai dengan adanya BSR (Bottom Simulating Reflector). Indikasi adanya BSR di penampang seismik ditunjukkan dengan amplitudo kuat, refleksi terbalik terhadap reflektifitas seafloor, bentuknya menyerupai seafloor dan memotong struktur. BSR diyakini sebagai batas bawah dari lapisan gas hidrat dan batas atas dari lapisan gas bebas. Analisis AVO dilakukan pada lapisan BSR. Analisis gradient tampak adanya anomali gas bebas dibawah BSR. Proses stack dalam domain angle juga dilakukan dalam near angle (0-150), medium angle (160-300) dan far angle (310- 450). Di angle stack terlihat adanya penebalan di far angle, hal ini menunjukkan adanya gas bebas di bawah BSR. Pemodelan sintetik angle gather digunakan untuk melihat model geologi yang berasosiasi dengan BSR. Proses atribut instantaneous phase digunakan untuk melihat kemenerusan BSR. Hasil atribut ini menunjukkan kemenerusan BSR dan ditemukan paleo BSR. Atribut instantaneous amplitude dapat membedakan antara lapisan diatas BSR dan dibawah BSR. Dari analisis yang dilakukan didapatkan 3 zona yaitu zona 1 terlihat BSR yang menerus, didapatkan gas hidrat dengan saturasi sedang dan terdapat gas bebas dibawahnya. Zona 2 terlihat BSR tidak menerus didapatkan gas hidrat saturasi kecil, tidak ditemukan gas bebas. Zona 3 terlihat BSR tidak menerus, didapatkan gas hidrat dengan saturasi paling besar dan terdapat gas bebas dibawahnya.

Tracks seismic BGR06-212 Southeast-Northwest is located in Simeulue fore arc basin. The research target is gas hydrate which characterized by the BSR (Bottom Simulating Reflector). Indication of BSR in seismic are strong amplitude, inverse reflection on the seafloor reflectivity, shape mimics seafloor and cut structures. BSR are believed as base of gas hydrate layer and top of free gas layer. AVO analysis has been done at BSR layer. Gradient analysis looks for anomalies in free gas below the BSR. Process stack in the angle domain is also done in near angle (0-150), medium angle (160-300) and far angle (310-450). The angle stack looks for a thickening in the far angle, it indicates the existence of free gas below the BSR. Synthetic modeling angle gather is used to view the geological model associated with BSR. The process of instantaneous phase attribute is used to see continuity of BSR. This attribute results demonstrate continuity of BSR and found paleo BSR. Attributes instantaneous amplitude can distinguish between the layers above and below the BSR. From the analysis we found three zones: zone 1 is continuously visible BSR, gas hydrate obtained with middle saturation and there is free gas below it. Zone 2 looks BSR not continuous, gas hydrate obtained with little saturation, can not be found free gas. Zone 3 looks BSR not continuous, gas hydrate obtained with the greatest saturation and there is free gas below it.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2015
T42939
UI - Tesis Membership  Universitas Indonesia Library
cover
Novin Syahputra
"[ABSTRAK
Dalam penelitian ini, telah dibuat sebuah alat ukur yang dapat mengukur
panjang gelombang cahaya. Dengan memanfaatkan fenomena sifat cahaya,
penulis ingin mengetahui besar nilai panjang gelombang dan pola distribusi
intensitas difraksi pada cahaya yang melewati kisi difraksi apakah sesuai dengan
teori berdasarkan referensi. Sumber cahaya yang digunakan berupa sinar laser
merah monokromatik dan polikromatik yang menghasilkan warna RGB serta
lampu merkuri. Kisi difraksi dan sumber cahaya digerakkan dengan motor DC
yang dilengkapi rotary encoder untuk menentukan posisinya. Semua pergerakan
alat ini dikendalikan oleh program LabVIEW National Instrument dan
pengolahan gambar dilakukan dengan program Vision Assistant. Hasil yang
diperoleh dalam penelitian ini yaitu sumber cahaya merah monokromatik
dengan kisi difraksi 300 garis/mm, panjang gelombang cahaya yang dihasilkan
(640 - 676) nm dengan besar kesalahan relatif sebesar 0,32 %. Warna biru
dengan kisi 600 garis/mm, panjang gelombang cahaya yang dihasilkan (454 -
475) nm, dengan besar kesalahan relatif sebesar 0,31 %. Warna hijau dengan
kisi 600 garis/mm, panjang gelombang cahaya yang dihasilkan (524 - 547) nm,
dengan besar kesalahan relatif sebesar 0,19 %. Warna merah dengan kisi 600
garis/mm, panjang gelombang cahaya yang dihasilkan (654 - 697) nm, dengan
besar kesalahan relatif sebesar 0,34 %. Semakin besar orde difraksi maka
semakin lemah tingkat intensitas yang dihasilkan.

ABSTRACT
In this research, has created a measuring instrument which can measure
light intensity distribution pattern. By exploiting phenomenon the nature of
light, the author would like to know the value of wave l ength and the
intensity distribution of the diffraction pattern on laser light that passes through a
diffraction grating so it can be appropriate to reference theory. The source of
light use red of monochromatic, polychromatic light which produce RGB color
and mercury lamp. Grating diffraction and source of light are moved by DC
motor with go forward and go back moving, which next by rotary encoder
change distance become counter in partition. The all of these moving are manage
by LabVIEW National Instrument and processing of image is executed of
Vision Assistant program. The result of research is red monochromatic with
width diffraction grating 300 lines/mm, is produced wave length of light (640 -
676) nm with relative error 0,32 %. For blue color with width diffraction grating
600 lines/mm, is produced wave length of light (454 - 475) nm with relative
error 0,31 %. For green color with width diffraction grating 600 lines/mm, is
produced wave length of light (524 - 547) nm with relative error 0,19 %. For red
color with width diffraction grating 600 lines/mm, is produced wave length (654
- 697) nm with relative error 0,34 %. The greater order of diffraction then the
less level of intensity was resulted.;In this research, has created a measuring instrument which can measure
light intensity distribution pattern. By exploiting phenomenon the nature of
light, the author would like to know the value of wave l ength and the
intensity distribution of the diffraction pattern on laser light that passes through a
diffraction grating so it can be appropriate to reference theory. The source of
light use red of monochromatic, polychromatic light which produce RGB color
and mercury lamp. Grating diffraction and source of light are moved by DC
motor with go forward and go back moving, which next by rotary encoder
change distance become counter in partition. The all of these moving are manage
by LabVIEW National Instrument and processing of image is executed of
Vision Assistant program. The result of research is red monochromatic with
width diffraction grating 300 lines/mm, is produced wave length of light (640 -
676) nm with relative error 0,32 %. For blue color with width diffraction grating
600 lines/mm, is produced wave length of light (454 - 475) nm with relative
error 0,31 %. For green color with width diffraction grating 600 lines/mm, is
produced wave length of light (524 - 547) nm with relative error 0,19 %. For red
color with width diffraction grating 600 lines/mm, is produced wave length (654
- 697) nm with relative error 0,34 %. The greater order of diffraction then the
less level of intensity was resulted.;In this research, has created a measuring instrument which can measure
light intensity distribution pattern. By exploiting phenomenon the nature of
light, the author would like to know the value of wave l ength and the
intensity distribution of the diffraction pattern on laser light that passes through a
diffraction grating so it can be appropriate to reference theory. The source of
light use red of monochromatic, polychromatic light which produce RGB color
and mercury lamp. Grating diffraction and source of light are moved by DC
motor with go forward and go back moving, which next by rotary encoder
change distance become counter in partition. The all of these moving are manage
by LabVIEW National Instrument and processing of image is executed of
Vision Assistant program. The result of research is red monochromatic with
width diffraction grating 300 lines/mm, is produced wave length of light (640 -
676) nm with relative error 0,32 %. For blue color with width diffraction grating
600 lines/mm, is produced wave length of light (454 - 475) nm with relative
error 0,31 %. For green color with width diffraction grating 600 lines/mm, is
produced wave length of light (524 - 547) nm with relative error 0,19 %. For red
color with width diffraction grating 600 lines/mm, is produced wave length (654
- 697) nm with relative error 0,34 %. The greater order of diffraction then the
less level of intensity was resulted., In this research, has created a measuring instrument which can measure
light intensity distribution pattern. By exploiting phenomenon the nature of
light, the author would like to know the value of wave l ength and the
intensity distribution of the diffraction pattern on laser light that passes through a
diffraction grating so it can be appropriate to reference theory. The source of
light use red of monochromatic, polychromatic light which produce RGB color
and mercury lamp. Grating diffraction and source of light are moved by DC
motor with go forward and go back moving, which next by rotary encoder
change distance become counter in partition. The all of these moving are manage
by LabVIEW National Instrument and processing of image is executed of
Vision Assistant program. The result of research is red monochromatic with
width diffraction grating 300 lines/mm, is produced wave length of light (640 -
676) nm with relative error 0,32 %. For blue color with width diffraction grating
600 lines/mm, is produced wave length of light (454 - 475) nm with relative
error 0,31 %. For green color with width diffraction grating 600 lines/mm, is
produced wave length of light (524 - 547) nm with relative error 0,19 %. For red
color with width diffraction grating 600 lines/mm, is produced wave length (654
- 697) nm with relative error 0,34 %. The greater order of diffraction then the
less level of intensity was resulted.]"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2014
T43429
UI - Tesis Membership  Universitas Indonesia Library
cover
Novita fitriah
"Data seismik merupakan data yang secara alami tidak stasioner, karena mempunyai berbagai kandungan frekuensi dalam domain waktu. Salah satu atribut seismik yang bertujuan untuk mencirikan tanggap frekuensi yang tergantung waktu dari batuan dan reservoir bawah permukaan adalah dekomposisi waktu-frekuensi atau sering disebut sebagai dekomposisi spektral. Dengan dekomposisi spektral diharapkan lapisan-lapisan sedimen yang tidak tampak terpisah (berada di dalam satu wiggle wavelet) dengan menggunakan data seismik konvensional, akan tampak terpisah jelas. Salah satu metode dari dekomposisi spektral yaitu Continous Wavelet Transform (CWT).
CWT adalah metoda dekomposisi waktu-frekuensi (time-frequency decomposition) yang ditujukan untuk mengkarakterisasi respon seismik pada frekuensi tertentu. Studi ini dilakukan dengan mengaplikasikan CWT pada wavelet dan frekuensi tertentu untuk melihat resolusi dari seismik .Wavelet yang digunakan pada studi ini adalah wavelet morlet, complex Gaussian-4, daubechies-5, coiflet-3 dan symlet-2 pada frekuensi 20 Hz, 40 Hz, 60 Hz dan 80 Hz (pada data sintetik 2D seismik) serta 40 Hz, 60 Hz, 80 Hz (pada data real 2D seismik)
Dan hasil yang diperoleh dari penelitian ini menunjukkan bahwa pada data seismik sintetik 2D seismik dilakukan aplikasi CWT dengan time sample 3s dan 50 CDP trace menunjukkan bahwa semakin tinggi frekuensi maka pemisahan lapisan tipis yang dapat dilakukan semakin baik. Pada data seismik real 2D, pemisahan lapisan tipis pada batubara terjadi pada tuningfrequency 80 Hz dengan menggunakan wavelet symlet-2.

Seismic data is naturally a non-stationary data, because it has many frequencies information in time domain. One of seismic attributes, which is used to characterize the frequency response as function of time and reservoir rock, is time-frequency decomposition or commonly known as spectral decomposition. By using spectral decomposition, it is expected that thin sedimentary layers (in one wiggle wavelet) can be separated rather than using conventionally seismic data.
CWT is one of time-frequency decomposition method to decompose the seismic signal into single frequency. This study had been carried out by implementing CWT in certain wavelet and frequency to analyze the seismic resolution. The various wavelets had been used this study, they are morlet, complex Gaussian-4, daubechies- 5, coiflet-3 and symlet-2. The various frequencies of 20 hz, 40 Hz, 60 Hz dan 80 Hz frequency (for 2D synthetic seismic data) and 40 Hz, 60 Hz, 80 Hz frequency (for 2D real seismic data) are applied.
The application of 2D synthetic seismic data that is implemented with CWT, 0.3 s time sample and 50 trace, shows that the use of higher frequency shows better separation. In addition, the application of 2D real seismic data shows that the best separation is in the frequency of 80 Hz with wavelet symlet-2.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2009
T26121
UI - Tesis Open  Universitas Indonesia Library