Ditemukan 1 dokumen yang sesuai dengan query
Yohanes Raymond Lawang
Abstrak :
Deep Eutectic Solvent (DES) merupakan gabungan Hydrogen Bond Acceptor (HBA) dan Hydrogen Bond Donor (HBD) yang memiliki potensi sebagai alternatif absorben CO2 pada pemrosesan natural gas dibandingkan dengan pelarut konvensional, seperti alkanoamin dan ionic liquid. Berdasarkan eksperimen, DES terbukti memiliki kemampuan menangkap CO2 yang sangat baik. DES dapat diklasifikasikan menjadi DES hidrofobik dan hidrofilik berdasarkan ketertarikannya terhadap air. Penelitian ini menggunakan DES hidrofobik untuk meminimalisasi penyerapan air yang dapat menurunkan kemampuan DES dalam menyerap CO2 sehingga mempermudah proses regenerasi DES berbasis pemisahan flash. Modeling dilakukan untuk membuktikan kemampuan DES dalam menyerap CO2 berdasarkan prediksi oleh model termodinamika modified Peng-Robinson EOS dengan pembuatan model kesetimbangan gas-cair (VLE) DES-CO2. Selain itu, dilakukan juga simulasi menggunakan Aspen Plus yang berbasis absorpsi fisika model ekuilibrium serta regenerasi DES berbasis flash system yang dioptimasi dan divalidasi berdasarkan data eksperimental dengan nilai % rata-rata relatif deviasi absolut (AARD) berkisar antara 0,993% hingga 1,151%. Kemudian, diperoleh profil kelarutan CO2 dalam DES saat absorpsi yang menurun dan profil recovery CO2 dalam DES saat regenerasi yang meningkat seiring terjadinya peningkatan laju alir umpan DES. Hasil menunjukan DES yang mengandung CO2 dapat diregenerasi hingga mencapai kemurnian 99,9%.
......Deep Eutectic Solvent (DES) is a combination of a Hydrogen Bond Acceptor (HBA) and a Hydrogen Bond Donor (HBD), showing potential as an alternative CO2 absorbent in natural gas processing compared to conventional solvents such as alkanolamines and ionic liquids. Experimental studies have demonstrated that DES possesses an excellent CO2 capture capability. DES can be classified into hydrophobic and hydrophilic DES based on their affinity for water. This research utilizes hydrophobic DES to minimize water absorption into DES, which can reduce the CO2 absorption efficiency of DES, thus facilitating the regeneration process of DES based on flash separation. Modelling is conducted to verify the CO2 absorption capability of DES, as predicted by the modified Peng-Robinson EOS thermodynamic model. This involves creating a VLE (Vapor-Liquid Equilibrium) model for DES-CO2. In addition, simulation is also conducted using Aspen Plus based on a physical absorption equilibrium model. The regeneration of DES is based on an optimized flash system, validated against experimental data with an average absolute relative deviation ranging from 0.993% to 1.151%. The results indicate that the CO2 solubility profile in DES during absorption decreases, and the CO2 recovery profile in DES during regeneration increases with the increasing feed flow rate of DES. The findings show that DES containing CO2 can be regenerated to achieve a purity of 99.9%.
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership Universitas Indonesia Library