Hasil Pencarian

Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2 dokumen yang sesuai dengan query
cover
Wayan Nata Septiadi
"Fluks kalor yang dihasilkan oleh peralatan elektronik khususnya Computer Processor Unit (CPU) terus mengalami peningkatan seiring dengan dibutuhkannya kecepatan yang tinggi dalam sistem tersebut. Generasi panas yang dihasilkan oleh CPU mulai meningkat tajam pada generasi Pentium-IV yang dapat menghasilkan panas hingga 30 Watt. Generasi setelah Pentium-IV sampai dengan sekarang menghasilkan panas lebih dari 35 Watt bahkan mencapai 130 Watt serta dimensi dari CPU didesain semakin kecil. Penggunaan media pendingin guna mereduksi flux panas dari CPU sangat diperlukan agar sistem tersebut dapat bekerja secara optimal. Heat pipe memiliki potensi yang sangat baik untuk dipergunakan sebagai media pendingin pada CPU. Dalam hal ini nano fluida digunakan sebagai fluida kerja pada heat pipe dengan wick screen mesh dan sintered powder tembaga. Fluida nano yang digunakan merupakan pencampuran antara partikel nano masing-masing (Al2O3, TiO2 dan ZnO) dengan masingmasing fluida dasar air dan ethyleneglycol. Partikel nano yang digunakan memiliki ukuran diameter rata-rata 20 nm dan nano fluida dibuat pada konsentrasi 1% sampai dengan 5% fraksi volume.
Hasil pengujian heat pipe dengan wick screen mesh menunjukkan pemakaian nano fluida sebagai fluida dapat mereduksi temperatur pada bagian evaporator sebesar 33.26oC dan 30.13oC untuk pemakaian nano fluida Al2O3-air dan TiO2-air dibandingkan dengan pemakaian air sebagai fluida kerja dan hambatan termal terendah terjadi pada heat pipe pada daerah evaporator sampai dengan daerah kondensor dengan pemakaian fluida kerja nano Al2O3-air 5 % yaitu 0.763 oC/Watt dan untuk hambatan termal antara daerah evaporator sampai dengan adiabatik mencapai 0.27 oC/Watt.Kinerja dari heat pipe wick screen mesh pada pemakaian fluida nano Al2O3-air 5 % lebih baik dibandingkan dengan pemakaian fluida konvensional dimana mampu mereduksi temperatur hingga 26.99oC pada Q=10 Watt serta kinerja dari heat pipe dengan pemakaian fluida nano Al2O3-air 5 % sebagai fluida kerja lebih baik lagi pada heat pipe wick sintered powder yaitu mampu mereduksi temperatur pada bagian evaporator hingga 28.8 oC pada Q=10 Watt serta hasil foto SEM menunjukkan pelapisan permukaan wick screen mesh dan sintered powder pada pemakaian fluida nano sebagai fluida kerja pada heat pipe sangat tipis serta aglomerasi yang terjadi pada sudut-sudut screen dan sintered powder sangat kecil sehingga struktur dan homogenisasi dari screen tidak berubah. Hal ini mengindikasikan bahwa fluida nano dapat digunakan sebagai fluida pengganti dari fluida konvensional.

The heat flux generated by electronic equipment, particularly CPU, is increasing due to the need of faster speed system. In Pentium IV generation, heat generated by CPU started to sky rocketed up to 30 Watt. Since then, the heat generated has been more than 30 watt, even up to 130 watt, and the dimension/size of CPU has been designed to be smaller and smaller. The application of cooling media to reduce the heat flux is crucial so that the CPU can function at its optimum performance. Heat pipe is such a potential device to work as a cooling media for CPU. It has been experimentally proved that nanofluids enhance the conductivity of base fluid. An investigation has been perform to compare the thermal resistant of nanofluids Al2O3-water, Al2O3-ethyleneglycol, TiO2-water, TiO2-ethyleneglycol and Zn-ethylene glycol which were applied on sintered metal powder and screen mesh wick heat pipes. The concentration of nano particles was also varied as 1% to 5% to the volume of base fluid. For comparison, heat pipes with water and ethyleneglycol as the working fluids, respectively, also were also tested in both wick heat pipes.
A heat pipe with 8 mm of diameter and 200 mm of length was tested using 10, 15 and 20 Watt heat loaded and cooled at constant temperature. It was found that the bigger the concentration of nano particles in nanofluids the lower the thermal resistance which is 0,763 oC/Watt. The maximum concentration of Al2O3-water vol. 5% in order to achieve best performance, the use of Al2O3-water can reduce the temperature of evaporator at average ±33.26 oC and TiO2-water can reduce the temperature at average ±30.13oC compared to that of water as a working fluid. The use of nanofluisd in heat pipe resulted in the formation of coating on the screen surface which originally from the element of nano particles; however, the thin coating shows no significant effect to the wick and the performance of heat pipe."
Lengkap +
Depok: Fakultas Teknik Universitas Indonesia, 2011
T28341
UI - Tesis Open  Universitas Indonesia Library
cover
Wayan Nata Septiadi
"Peningkatan kinerja teknologi elektronik khususnya Central Processing Unit (CPU) yang disertai dengan pengecilan dimensi menghasilkan fluks kalor yang semakin besar. Peningkatan fluks kalor yang semakin tajam hingga 50 sampai dengan 100 W/cm2 memerlukan suatu pendingin yang mampu menyerap dan mengontrol fluks kalor yang dihasilkan tersebut sehingga CPU mampu bekerja secara handal dan umur pakai dari piranti tersebut menjadi lebih panjang. Tingginya fluks kalor yang dihasilkan mengakibatkan pendingin konvensional yang bekerja secara satu fasa kurang efektif untuk mengatasi permasalahan fluks kalor tersebut.
Pipa kalor merupakan alat pendingin pasif yang bekerja secara dua fasa, dimana sirkulasi fluida kerja hanya memanfaatkan gaya kapilaritas sebagai pompa kapiler. Struktur pori yang homogen, daya kapilaritas dan wettability yang tinggi merupakan beberapa persyaratan sumbu kapiler. Konduktivitas termal yang tinggi dari fluida kerja juga akan mampu meningkatkan kinerja pipa kalor. Sumbu kapiler yang umum digunakan dan biasanya memberikan kinerja yang baik terhadap kinerja pipa kalor adalah sumbu kapiler jenis sintered powder tembaga. Sumbu kapiler jenis ini proses produksinya sangat sulit dan sangat susah untuk mampu menghasilkan struktur pori yang homogen. Sifat yang mudah teroksidasi juga mengakibatkan wettability dari sumbu kapiler menurun sehingga sifatnya menjadi hidrofobik, yang mengakibatkan kinerja pipa kalor menurun. Terumbu karang merupakan media berpori non logam yang memiliki struktur pori yang cukup homogen serta daya kapilaritas dan wettability yang tinggi.
Penelitian ini bertujuan untuk meningkatkan kinerja termal pipa kalor melalui pengintegrasian terumbu karang sebagai sumbu kapiler dan nanofluida sebagai fluida kerja. Penelitian dilakukan dengan melakukan pengujian pipa kalor dengan sumbu kapiler terumbu karang Tabulate yang memiliki diameter pori ± 52,949 μm dan sintered powder dengan diameter pori ± 60,704 μm yang juga dibandingkan dengan heatsink, heatsink fan dan termosipon. Pengujian dilakukan dengan kondisi pembebanan minimum dan maksimum dari prosesor yang dianalogikan melalui pelat simulator serta diujikan juga pada prosesor Pentium 4 2.4 GHz, dual core 925 3.0 GHz, core i.5 3.0 GHz dan core i.7 3.4 GHz. Nanofluida dibuat dari partikel nano Al2O3, TiO2 dan CuO dengan diameter 20 nm yang dicampur pada fluida dasar air dengan fraksi volume 0,1% vol sampai dengan 10% vol. Analisa CFD digunakan untuk menjelaskan sirkulasi aliran didalam pipa kalor.
Dari penelitian didapatkan penggunaan sumbu kapiler terumbu karang Tabulate dapat menurunkan hambatan termal 44% dengan meningkatkan koefisien perpindahan kalor12,13% dibandingkan dengan menggunakan sumbu kapiler sintered powder tembaga. Pada kondisi beban maksimal pipa kalor dengan sumbu kapiler terumbu karang Tabulate masing-masing dapat menurunkan suhu permukaan prosesor 36%, 38,19%, 35,29% dan 99,98% masingmasing untuk pendinginan pada prosesor core i.7, core i.5, dual core dan Pentium 4. Penggunaan nanofluida sebagai fluida kerja relatif lebih efektif pada fraksi volume rendah.

The increasing performance of electronic device, especially in Central Processing Unit (CPU) is followed by smaller size dimension, which lead into higher heat flux production. A high heat flux production, which is 50 until 100 W/cm2 needs a cooling system that can absorb and control the heat flux till the CPU can perform greatly and has a long lifetime.Conventional cooling systems that work based on one-phase system are not effective to solve the problem that is caused by high heat flux production.
Heat pipe is a passive cooling device that work based on two-phase flow. Working fluid circulation only created by capillary force as capillary pump. Uniform pore structure,capillary force, and high wettability are some requirements for selecting wick. High thermal conductivity of working fluid will increase the performance of the heat pipe. Generally, sintered copper powder is used as wick to create a high performance heat pipe, but this kind of wick is very hard to be manufactured and non-uniform pores are created. Moreover, sintered copper powder is easy to be oxidized which lead into decreasing of wettability and become hydrophobic. Coral is a nonmetal material that has a uniform material, high capillarity force, and high wettability.
The purpose of this research is to elevate thermal performance of heat pipe through integrating coral material as wick and nanofluid as working fluid. Research is conducted by experimenting a coral tabulate wicked heat pipe with ± 52,949 μm pores diameter and a sintered copper powder wicked heat pipe with ± 60,704 μm. More comparison are done by using heat sink, heat sink fan, and thermosiphon. Heat load for this experiment use minimum load and maximum load from processor through simulator plate and Pentium 4 2.4 GHz processor, dual core 925 3.0 GHz, core i.5 3.0 GHz and core i.7 3.4 GHz. Nanofluid made from Al2O3, TiO2 and CuO with 20nm diameter. Those nano particles are mixed with water as based fluid with 0.1% until 10% as volume fraction. CFD analysis are used to explain fluid circulation inside the heat pipe.
From this research, it is concluded that the usage of coral tabulate can reduce thermal resistance as high as 44% with 12,13% increasing heat transfer coefficient compared to usage of sintered copper powder as wick. At full load, heat pipe with coral tabulate wick can decrease the processors surface temperature as 36%, 38,19%, 35,29% and 99,98% for core i.7, core i.5, dual core and Pentium 4 processor respectively. The usage of nanofluid as working fluid is relatively more effective at low volume fraction.
"
Lengkap +
Depok: Fakultas Teknik Universitas Indonesia, 2014
D1929
UI - Disertasi Membership  Universitas Indonesia Library