Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2 dokumen yang sesuai dengan query
cover
Steven Darmawan
"Turbin gas mikro (MGT) merupakan salah satu alternatif pembangkit daya dengan daya dibawah 200 kW untuk mengatasi kebutuhan energi yang semakin meningkat. Dalam satu dekade terakhir, MGT telah diproyeksikan sebagai salah satu sistem pembangkit daya maupun termal yang prospektif, secara teknis, dimensi, biaya, dan lingkungan. Dari berbagai komponen pada turbin gas, kompresor merupakan salah satu komponen yang berperan sangat penting karena mensuplai udara pembakaran. Rancang bangun dilakukan terhadap prototype MGT GT85-2, dengan menggunakan turbocharger Garrett TA31 sebagai komponen mesin turbo. Kompresor TA31 memiliki jumlah full blade 6 buah, spliter blade 6 buah, diameter inducer dan exducer masing-masing 47,4 mm dan 74,9 mm, serta sudut alir relatif inlet dan outlet masing-masing 32,64o dan 26,5o yang didapatkan melalui metode reverse engineering. Berdasarkan data ini, parameter-parameter unjuk kerja kompresor, yaitu: rasio tekanan, Mach Number, laju alir massa dan volume, serta kecepatan sudu dapat diketahui dengan metode teoritis. Selanjutnya, metode CFD digunakan untuk mengetahui pola alir kecepatan pada permukaan meridional antara full dan spliter blade. Pada simulasi CFD selanjutnya, radius splitter blade divariasikan menjadi 3 buah, yaitu radius standar 26.75mm, variasi a 25.68mm, dan variasi b 27.82 mm untuk masing-masing putaran poros uji (7480 rpm, 8002 rpm, 8892 rpm, 11820 rpm, dan 13000 rpm). Hasil simulasi dengan menggunakan CFDSOF® menunjukkan bahwa penggunaan splitter blade dengan variasi a menurunkan kecepatan sudu sebesar 0.37% secara rata-rata dan variasi b akan meningkatkan kecepatan sudu pada setiap putaran poros uji secara rata-rata sebesar 0.04% terhadap penggunaan splitter blade standar. Verifikasi hasil simulasi CFD terhadap hasil perhitungan teoritis menunjukkan bahwa terdapat perbedaan nilai rata-rata sebesar 8.22% untuk kompresor uji dengan splitter blade standar. Analisa terhadap hasil pengujian menunjukkan bahwa kompresor bekerja dengan kecepatan di bawah spesifikasinya.

To meet increased energy demand, Micro Gas Turbine (MGT) has become an alternative power source for power less than 200kW. On the last decade, MGT has been projected as a prospective power and thermal source in technical, dimension, cost, and environmental aspects. Prototype design of MGT GT85-2 has been done with the use of Garrett TA31 turbocharger as the turbomachine component. In gas turbine, compressor is a very important component for combustion air supply. The TA31 compressor consist of 6 full blades and 6 spliter blades with inducer and exducer diameter respectively 47.4 mm and 74.9 mm. Blade relative angle 32.64 degree inlet and 26.5 degree outlet angle was found from reverse engineering method, 3D scanning. Based on 3D scan output, compressor performance parameters, such as pressure ratio, Mach number, mass and volume flow rate has been found theoritically. Furthermore, CFD method used to understand the flow in meridional surface between full and splitter blade. Further CFD simulation varying the radius of splitter blade in 3 vaiant: standard radius 26.75mm, variation a 25.68mm, and variation b 27.82 mm for each testing speed (7480 rpm, 8002 rpm, 8892 rpm, 11820 rpm, dan 13000 rpm). CFD simulation done with CFDSOF® shows that the a variant radius decreased the blade speed of 0.37% on average compared to standard radius. Meanwhile the b variant increased the blade speed of 0.04% on average, compared to standard radius. Verification of the blade speed between CFD simulation result with theoretical results for standard radius showed that the CFD results are 8.22% lower on average. Analysis of the test result indicated that compressor operates at lower speed than specified."
Depok: Fakultas Teknik Universitas Indonesia, 2012
T31604
UI - Tesis Open  Universitas Indonesia Library
cover
Steven Darmawan
"Kebutuhan akan energi yang semakin meningkat menjadikan turbin gas mikro berkembang menjadi alternatif pembangkit daya yang dapat digunakan. Turbin gas Mikro Proto X-2a merupakan turbin gas mikro dengan satu-tingkat kompresor-turbin dimana pembangkitan daya dilakukan melalui aplikasi sebuah runner cross-flow yang dihubungkan ke generator. Runner cross-flow ini digerakkan oleh udara pada sisi masuk kompresor. Pada operasinya, vorteks resirkulasi terbentuk pada bagian dalam runner cross-flow. Karena besaran vorteks ini mempengaruhi unjuk kerja dari runner cross-flow, analisis yang lebih baik diperlukan, yang juga dapat digunakan dan sebagai dasar pengembangan. Perilaku vorteks resirkulasi direpresentasikan lebih detail, dengan menggunakan metode CFD dengan menggunakan model turbulen RNG k-ε. Karakteristik vorteks resirkulasi yang diiringi dengan penurunan temperatur pada bagian dalam runner cross-flow tersebut sesuai untuk penggunaan model turbulen RNG k-ε. Perubahan temperatur tersebut mempengaruhi aliran resirkulasi yang terjadi secara molekular, selain secara konvektif. Pada kondisi ini, analogi Reynolds tidak lagi sesuai untuk digunakan. Oleh karena itu, pemilihan bilangan turbulen Prandtl turbulen ? inverse (α) yang mampu merepresentasikan fenomena aliran tersebut menjadi penting.
Berdasarkan konsep difusivitas pada aliran turbulen, konsep rasio viskositas molekukar dan turbulen pada model turbulen RNG k-ε, pada penelitian ini, nilai α divariasikan menjadi 1; 1,1; 1,2 dan 1;3. Simulasi CFD pada runner cross-flow dilakukan secara tiga-dimensi dengan menggunakan CFDSOF. Jumlah mesh optimum 300 x 147 x 3 dari hasil uji ketergantungan mesh digunakan dengan jenis mesh Body-fitted-coordinate (curved-linear). Eksperimen dilakukan pada sistem turbin gas mikro Bioenergi Proto X-2a yang telah dihubungkan dengan runner cross-flow dan sebuah alternator DC. Parameter karakteristik turbin gas mikro didapatkan, bersama dengan kecepatan poros dan beda temperatur pada casing runner cross-flow.
Data hasil eksperimen (data_1, data_2 dan data_3) secara berturut-turut menghasilkan kecepatan poros runner (N3) dan beda temperatur pada sisi masuk dan keluar (ΔTCR) sebesar 1330 rpm (ΔTCR1 = 0,424oC) , 604 rpm (ΔTCR2 = 0,874oC) dan 659 rpm (ΔTCR3 = 0,936oC). Ketiga data ini dianalisis secara lebih detail dengan CFD. Hasil eksperimen dengan data_3 dengan ΔTCR paling besar menunjukkan bahwa pada kondisi tersebut runner sudah terbebani oleh generator listrik, sistem turbin gas mikro sudah menghasilkan daya listrik 0,54 kWh. Kondisi ini dicapai pada kecepatan kompresor (N1) 78.890 rpm dengan rasio tekanan 1,4 pada efisiensi kompresor 67% dan laju bahan bakar Diesel 2,314 g/s, dengan daya termal yang dihasilkan runner cross-flow sebesar 230 Watt. Secara umum, hasil simulasi CFD menunujukkan bahwa vorteks resirkulasi terbentuk di bagian dalam runner cross-flow pada zona VI hingga VIII (dari sudu jalan ke-14 hingga ke-18).Variasi nilai α yang divariasikan menjadi 1; 1,1; 1,2 dan 1,3 efektif pada beda temperatur runner ΔTCR yang paling besar (ΔTCR3 = 0,936oC) dengan parameter hasil simulasi kecepatan-w dan temperatur statik pada zona resirkulasi (zona VI ? VIII) koordinat (i,j,k = 37-100; 57; 2), pada daerah dekat dinding sudu arah radial pada sudu ke-14 hingga sudu ke-18. Pada data hasil eksperimen lain, variasi nilai α tidak signifikan pada koordinat tersebut. Dari berbagai analisis yang telah dilakukan pada runner cross-flow, terutama pada aliran resirkulasi, besaran bilangan Prandtl turbulen - inverse (α) dapat direkomendasikan nilai optimum α = 1,1. Bilangan α tersebut menjadikan rasio viskositas molekular dan viskositas turbulen sebesar 𝜈0𝜈𝑇=0,8394, yang paling optimum dalam merepresentasikan aliran resirkulasi yang terjadi pada bagian dalam runner cross-flow dengan menggunakan model turbulen RNG k-ε. Hasil ini dapat digunakan untuk analisis dan pengembangan perancangan runner cross-flow.
Increasing of energy needs has lead the development of micro gas turbine as an alternative power generator. The Proto X-2a Bioenergy Micro Gas Turbine is a single-stage compressor-turbine, at which the electricity power generated by application of a cross-flow runner coupled with a DC alternator. This cross-flow runner is driven by inlet compressor air ?a sub-pressure application. Recirculation vortexes which occur during operation inside the cross-flow runner affect the performance ? the cross-flow runner and the Proto X-2a in general. For performance analysis and design development reasons, this condition has triggered more detailed analysis of this type of vortex of the cross-flow runner numerically with CFD method with RNG k-ε turbulence model. Characteristics of recirculation vortexes carried with slighty-decreased temperature inside the cross-flow runner suitable with RNG k-ε turbulence model. Furthermore, the temperature difference inside the cross-flow runner affects the recirculation vortexes since the molecular transport also dominant, beside the convective transport. During this condition, selection of appropriate inverse-turbulent Prandtl number (α) is important to represent the recirculation vortexes.
Inverse-turbulent Prandtl numer (α) varied to 1; 1,1; 1,2 and 1,3 in this research, based on turbulence diffusivity theory, turbulent and molecular viscosity ratio and basic concept of RNG k-ε turbulence model. The CFD simulation done three-dimensionaly with CFDSOF. The mesh-depencency test resulting the optimum mesh was 300 x 147 x 3 cells. The mesh was body-fitted-coordinate (curved-linear type). Experimental data from the Proto X-2a Bioenergy Micro Gas Turbine including the temperature difference and shaft rotational speed of the cross-flow runner is used to CFD simulation. Electricity power generated by a DC alternator coupled to the cross-flow runner is also used to analyzed as a part of the system and temperature difference effect to the runner.
Three experimental data (data_1, data_2 anda data_3) were detailed-numerically analyze. The datas generated the cross-flow runner shaft speed (N3) and temperature difference at cross-flow runner casing; N3 = 1330 rpm (ΔTCR1 = 0,424oC) , N3 = 604 rpm (ΔTCR2 = 0,874oC) dan N3 = 659 rpm (ΔTCR3 = 0,936oC) respectively. Data_3 shows the optimal condition of the system, at which the compressor shaft velocity (N1) was 78.890 rpm, pressure ratio at 1,4, efficiency of 67%, and generated 0,54 kW electricity power with 2,314 g/s Diesel fuel flow rate. At this condition, the cross-flow runner generated 230 W. Recirculation vortexed shows by CFD simulation occur at the inner side of the cross-flow runner, at VIth ? VIIIth zones (14th ? 18th blade) in general for all data. The CFD simulation shows that variation of α effective at data_3, where the temperature difference is the largest (ΔTCR3 = 0,936oC), while the others data shows almost no difference at α variations. More detailed analysis done at recirculating vortexed ? dominated area at i;j;k = 37-100; 57; 2 for data_3, near the radial blade wall with two most affective parameters; w-velocity and static temperature to represent the recirculation flow at recirculation zone. The optimum α is 1,1 since this α variation shows the most logic results compared to the other variation of α. Therefore, for CFD simulation with RNG k-ε turbulence model to a cross-flow runner, is is recomended to use α that represent better recirculation flow, and the optimum ratio between molecular and turbulent viscosity is now 𝜈0𝜈𝑇=0,8394. This result is can be used for both analysis and future design development of cross-flow runner.>/i>
"
Depok: Fakultas Teknik Universitas Indonesia, 2015
D2092
UI - Disertasi Membership  Universitas Indonesia Library