Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2 dokumen yang sesuai dengan query
cover
Pierre Wolter Winowatan
Abstrak :
Pembuatan komposit Li4Ti5O12-Sn nano/Grafin telah berhasil dilakukan sebagai material anoda pada baterai ion litium. Penambahan material grafin komersial dengan variasi berat 1%, 3% dan 5% dan waktu sonikasi selama 45 menit dan 75 menit telah dilaksanakan. Sintesis dari  Li4Ti5O12 dilakukan dengan membuat prekursor TiO2 menggunakan metode sol-gel dan sudah dikalsinasi yang dicampurkan dengan LiOH dengan metode solid-state reaction dan proses sintering. Material Li4Ti5O12 dicampurkan dengan serbuk Sn nano dengan berat 10% untuk mendapatkan material komposit Li4Ti5O12-Sn nano. Pembuatan komposit Li4Ti5O12-Sn nano/Grafin dimulai dari penambahan variasi berat grafin komersial yang berbeda dengan metode wet milling menggunakan planetary ball mill selama 1 jam dan dilanjutkan dengan proses sonikasi menggunakan ultrasonic homogenizer dengan variasi waktu berbeda sebelum akhirnya dilakukan kalsinasi menggunakan vacuum furnace dengan gas N2 pada temperatur 500°C selama 5 jam. Hasil penelitian menunjukan bahwa adanya peningkatan performa dilihat dari kapasitas spesifik dari komposit Li4Ti5O12-Sn nano dengan penambahan berat grafin yang optimum pada 5% dengan waktu sonikasi 75 menit walaupun terdapat beberapa pengotor yang terdeteksi pada hasil pengujian XRD. Secara umum performa baterai sangat baik pada siklus yang tinggi dengan pengurangan discharge capacity yang minor dan dengan penambahan grafin dapat meningkatkan kapasitas spesifik dari material komposit Li4Ti5O12-Sn nano. ......The synthesis of Li4Ti5O12-Sn nano/Graphene composite has been successfully carried out as an anode material for lithium-ion battery. The addition of commercial graphene with a weight variation of 1%, 3% and 5% and sonication time of 45 minutes and 75 minutes has been done successfully. Synthesis of Li4Ti5O12 is done by making TiO2 precursors using sol-gel method and has been calcined, followed by solid-state reaction with LiOH sintering process. The Li4Ti5O12 material is mixed with Sn nano powder with a weight of 10% to obtain L4Ti5O12-Sn nano composite material. Production of Li4Ti5O12-Sn nano/Graphene composites start from mixing different commercial graphene weight variations by wet milling method using planetary ball mill for 1 hour and continued with sonication process using ultrasonic homogenizer with different time variations before calcination process using a vacuum furnace with N2 gas at 500°C for 5 hours. Li4Ti5O12-Sn nano with an optimal maximum weight at 5% with a sonication time of 75 minutes including some impurities reported on the XRD results. In general, the battery samples are very good at high cycles with overall small capacity fade.
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Pierre Wolter Winowatan
Abstrak :
Konsumsi bahan bakar fosil telah dianggap sebagai salah satu kebutuhan utama kita. Penggunaan bahan bakar fosil bisa merusak lingkungan dengan menghasilkan polusi sebagai produk dari pembakaran bahan bakar fosil. Ada banyak penemuan mengenai pengembangan penyimpanan energi seperti baterai. Penggunaan baterai lithium-ion dapat menjanjikan untuk aplikasi yang membutuhkan daya tinggi dan salah satu kandidat untuk mengalihkan penggunaan bahan bakar fosil. Lithium titanat adalah bahan yang menjanjikan untuk digunakan sebagai bahan anoda. Penambahan silikon yang memiliki kapasitas teoritis 4200 mAh g-1 telah membuat lithium titanat dan silikon untuk saling melengkapi dan bersinergi satu sama lain. Lithium titanate disintesis menggunakan metode sol-gel dan metode solid state. Peracikan dengan elemen silikon dalam slurry dapat mencegah perubahan fase dari silikon menjadi SiO2. Kadar silikon dibagi menjadi tiga komposisi 10 , 20 dan 30 dengan nomenklatur LTO-Si10 sr, LTO-Si20 sr dan LTO-Si30 sr untuk setiap sampel memiliki konten yang berbeda dari silikon masing-masing. Kapasitas tertinggi terkait dengan tingkat C rate yang berbeda adalah LTO-Si20 sr dan Diikuti oleh LTO-Si10 sr yang dimana kapasitas saat C rate berbeda LTO-Si30 memiliki kapasitas yang terbilang buruk.
The consumption of fossil fuel has been considered as one of our main necessity. The use of fossil fuel could damage our environment with the produce of pollution as the combustion product of fossil fuel. There are many inventions regarding the development of energy storage such as battery. The use of lithium ion has been promising for high power application and one of the candidates to divert the usage of fossil fuel. Lithium titanate is a promising material to be used as anode material. The addition of silicon which has theoretical capacity of 4200 mAh g 1 has made lithium titanate and silicon to compliment and synergize with one another. The lithium titanate was synthesized using sol gel and solid state methods. The compounding with silicon element was in the slurry making to prevent any phase changes of silicon to be SiO2. The silicon content was divided into three compositions of 10, 20 and 30 with the nomenclature of LTO Si10 sr, LTO Si20 sr and LTO Si30 sr for each sample having different content of silicon respectively. The highest capacity associated with different C rate is LTO Si20 sr and followed by LTO Si10 sr with LTO Si30 sr having poor overall capacity.
Depok: Fakultas Teknik Universitas Indonesia, 2017
S69280
UI - Skripsi Membership  Universitas Indonesia Library