Ditemukan 2 dokumen yang sesuai dengan query
Naufal Ihsan Pratama
"Seiring berkembangnya teknologi informasi yang mulai merambah ke sektor ekonomi menyebabkan banyak bermunculan penyedia layanan dompet digital di Indonesia. DOKU sebagai salah satu penyedia layanan dompet digital ingin terus berinovasi untuk meningkatkan kepuasan pelanggan. Proses verifikasi data diri yang membutuhkan waktu lama karena harus dilakukan secara manual kini menjadi persoalan. Fokus penelitian ini adalah untuk mengembangkan sebuah aplikasi mobile cross platform yang dapat
digunakan untuk mengekstrak data dari gambar kartu idenitas pengguna DOKU agar proses verifikasi data dapat dilakukan secara otomatis.
Arsitektur dari aplikasi terdiri dari aplikasi mobile menggunakan Flutter dan webservice menggunakan Flask. Proses ekstraksi data dari gambar kartu identitas dilakukan menggunakan Tesseract-OCR. Hasil ekstraksi data akan diprediksi menggunakan model LSTM untuk dapat dilakukan verifikasi lanjutan. Hasil eksperimen menunjukkan akurasi pengenalan karakter dari gambar kartu identitas sebesar 77.45% dan akurasi prediksi kategori sebesar 88%. Dengan demikian aplikasi ini dapat digunakan
untuk menyelesaikan masalah verifikasi data pengguna.
The development of information technology has penetrated the economic sector causing many digital wallet service providers to appear in Indonesia. DOKU as one of the digital wallet service providers wants to innovate to increase customer satisfaction. The process of verifying personal data which takes a long time because it has to be done manually is now a problem. The focus of this research is to develop cross-platform mobile applications that can be used to extract data from DOKU user identity card images so that the data verification process can be done automatically. The application architecture consists of mobile applications using Flutter and web services using Flask. The data extraction process from the identity card image is done using Tesseract-OCR. The results of data extraction will be predicted using the LSTM model for the further verification process. The experimental results show that the accuracy of character recognition from the identity card images is 77.45% and the category prediction accuracy is 88%. Thus this application can be used to resolve user data verification issues."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Naufal Ihsan Pratama
"Skizofrenia adalah gangguan mental berat yang ditandai oleh psikosis, yang menyebabkan hilangnya hubungan dengan kenyataan dan gangguan komunikasi. Fase prodromal, yang terjadi sebelum munculnya psikosis, penting untuk diidentifikasi, terutama pada remaja, karena dapat berkembang menjadi skizofrenia. Deteksi dini gangguan berpikir, yang merupakan gejala dari gangguan bicara, sangatlah penting. Kemajuan terbaru dalam bidang Natural Language Processing (NLP) memberikan wawasan yang berharga untuk mendiagnosis gangguan berpikir. Penelitian kami menggunakan teknik NLP yang diintegrasikan ke dalam model berbasis IndoBERT Transformer untuk mengklasifikasikan gangguan pikiran secara efektif. Kami bertujuan untuk meningkatkan akurasi dan keandalan diagnosis, dengan mempertimbangkan kasus-kasus prodromal dan menggunakan skala TALD yang divalidasi untuk penilaian. Hasil penelitian menunjukkan bahwa penggunaan kombinasi fitur optimasi dan IndoBERT berhasil mencapai tingkat akurasi sebesar 72,2% dan rata-rata tertimbang F1 sebesar 70,2%. Analisis kami menunjukkan bahwa model ini memiliki potensi yang baik dalam mendeteksi gangguan berpikir.
Schizophrenia is a severe mental disorder characterized by psychosis, leading to a disconnect from reality and disrupted communication. The prodromal phase, preceding psychosis, is essential to identify, particularly in adolescents, as it can progress into schizophrenia. Early detection of thought disorder, a symptom of disorganized speech, is crucial. Recent advancements in Natural Language Processing (NLP) provide valuable insights into diagnosing thought disorders. Our study leverages NLP techniques integrated into the IndoBERT Transformer-based model to classify thought disorders effectively. We aim to improve diagnosis accuracy and reliability, considering prodromal cases and using the validated TALD scale for assessment. The results showed that using a combination of optimized and IndoBERT features managed to obtain an accuracy rate of 72.2% and an F1 weighted average of 70.2%. The analysis shows that this model has good potential in detecting thought disorders."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership Universitas Indonesia Library