Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2 dokumen yang sesuai dengan query
cover
M. Hadi Kusuma
"Fenomena rewetting pada celah sempit persegi selama proses quenching berhubungan dengan manajemen termal ketika terjadinya suatu kecelakaan nuklir, baik kecelakaan karena kehilangan air pendingin maupun kecelakaan lain yang mengakibatkan lelehnya teras reaktor nuklir. Untuk itu perlu dilakukan penelitian tentang hal tersebut di atas agar didapatkan pemahaman yang benar tentang keselamatan reaktor nuklir dari sisi pendinginan khususnya fenomena rewetting di celah sempit persegi selama proses quenching dan juga dapat berguna bagi perbaikan desain reaktor generasi selanjutnya.
Penelitian difokuskan pada penentuan suhu, waktu, dan kecepatan rewetting di celah sempit persegi berukuran 1 mm dengan 3 variasi suhu awal pelat persegi dan 3 variasi laju aliran air pendingin. Eksperimen dilakukan dengan menginjeksikan air pada laju aliran 0,1-0,3 liter/detik pada suhu air pendingin 85oC. Data transien suhu hasil pengukuran direkam melalui sistem akuisisi data. Data tersebut digunakan untuk mengetahui suhu transien pendinginan celah sempit persegi dan menentukan suhu, waktu, dan kecepatan rewetting dari proses quenching tersebut.
Penelitian ini bertujuan untuk memperoleh data eksperimen perubahan suhu dinding pelat panas selama proses quenching pada celah sempit persegi, memahami fenomena rewetting pada proses quenching pada celah sempit persegi, dan mempelajari pengaruh suhu awal pelat panas dan laju alir air pendingin terhadap rewetting. Hasil yang diperoleh menunjukkan bahwa pada suhu 205°C dengan debit aliran 0,1-0,3 liter/detik, suhu rewetting terletak pada rentang 201,38-205°C, waktu rewetting terjadi pada 0 detik dan kecepatan rerata rewetting pada 0 meter/detik. Pada suhu 400°C dengan debit aliran 0,1-0,3 liter/detik, suhu rewetting terletak pada rentang 358,66-387,5°C, waktu rewetting terjadi pada 2,73-44,48 detik, dan kecepatan rewetting pada 0,0094-0,1037 meter/detik. Pada suhu 600°C dengan debit aliran 0,1-0,3 liter/detik, suhu rewetting terletak pada rentang 426,63-480,55°C, waktu rewetting terjadi pada 34,77-88,23 detik, dan kecepatan rerata rewetting pada 0,0025-0,0072 meter/detik.
Dari penelitian ini menunjukkan suhu terjadinya rewetting akan meningkat seiring dengan kenaikan suhu permukaan pelat panas persegi. Pada suhu permukaan pelat panas persegi yang sama, semakin besar debit aliran air pendingin yang dilewatkan melalui celah sempit maka waktu dan kecepatan rewetting yang dibutuhkan untuk mendinginkan permukaan pelat persegi tersebut akan semakin cepat. Meningkatnya suhu pelat panas persegi bagian tengah pada suatu debit aliran yang sama akan menyebabkan semakin lamanya waktu yang dibutuhkan oleh air pendingin untuk melakukan rewetting. Dapat diperkirakan bahwa gelembung uap yang terbentuk akibat pemanasan pelat persegi tersebut bergerak ke atas dan mengakibatkan terjadinya counter current yang menghambat laju aliran air pendingin untuk melakukan pendinginan celah sempit persegi.

Rewetting phenomena on a rectangular narrow gap during quenching process is related to thermal management when the occurrence of a nuclear accident due to loss of coolant accident or other kind of accidents resulting in core melted. In order to address the problem, it is crucial to conduct research to get a better understanding of nuclear safety reactor regarding to cooling especially in rewetting phenomena in a rectangular narrow gap during quenching process. The influence of the initial temperature of the hot plate and cooling water flow rate of rewetting was also observed.
The study focused on determining the temperature, time, and velocity of rewetting in 1 mm narrow gap with 3 variations of the initial temperature of hot plates and 3 variations of the cooling water flow rate. Experiments were carried out by injecting water into the hot plate whose temperature ranging from 205 to 600°C at a flow rate 0.1-0.3 liters/sec to 85°C cooling water temperature. Data of transient temperature measurements were recorded using a data acquisition system in order to record the temperature, time, and velocity of rewetting during the quenching process.
This study aims to understand the phenomenon of rewetting during the quenching process and to study the influence of the initial temperature of the hot plate and cooling water flow rate of rewetting on a rectangular narrow gap. The results shows that at 205°C with a flow rate 0.1-0.3 l/s, rewetting temperature range 201.38 - 205°C, rewetting time occurred at 0 second, and average rewetting velocity is 0 m/s. At 400°C with flow rates 0 - 0.3 l/s, rewetting temperature is 358.66 ? 387.5°C, the rewetting time is 2.73 ? 44.48 seconds, and average rewetting velocity is 0.0094 - 0.1037 m/s. At 600°C with flow rates from 0.1- 0.3 l/s, rewetting temperature range from 426.63 to 480.55°C, the rewetting time from 34.77 ? 88.23 seconds, and the average rewetting velocity from 0.0025 -0.0072 m/s.
The results indicates that rewetting temperature will increase with rising temperature of rectangular hot plate. At the same temperature of hot plate, the greater flow rate of cooling water passed through a rectangular narrow gap the faster the resulted time and velocity of rewetting will be. Increasing the temperature of the hot plate on the center plate in a similar flow rate will cause the length of time required by the cooling water for rewetting. It is estimated that the amount of gas formed by heating a rectangular plate moved up and resulted a counter current that inhibits the cooling water flow rate in the cooling of rectangular hot plate."
Depok: Universitas Indonesia, 2012
T30394
UI - Tesis Open  Universitas Indonesia Library
cover
M. Hadi Kusuma
"Untuk meningkatkan keselamatan termal pada saat terjadi kecelakaan akibat station blackout, vertical straight wickless-heat pipe pipa kalor lurus tanpa sumbu kapiler yang diletakkan secara vertikal diusulkan sebagai sistem pendingin pasif baru untuk pembuangan panas sisa hasil peluruhan di kolam penyimpanan bahan bakar bekas nuklir. Pipa kalor akan membuang panas peluruhan dari kolam penyimpanan bahan bakar bekas nuklir dan dapat menjaga sistem tetap aman. Tujuan penelitian ini adalah untuk menginvestigasi karakteristik, fenomena perpindahan kalor, dan unjuk kerja termal pipa kalor yang digunakan mencari pengaruh kecepatan pendinginan dengan besarnya kalor yang harus dibuang, menganalisis keserupaan dimensi dari pipa kalor yang digunakan, dan mengetahui teknologi pipa kalor yang dapat digunakan sebagai sistem keselamatan pasif di instalasi nuklir pada kondisi kecelakaan akibat station blackout. Investigasi secara eksperimen dilakukan dengan mempertimbangkan pengaruh tekanan awal pipa kalor, evaporator filling ratio, beban kalor evaporator, dan laju aliran pendingin di water jacket. Air pendingin disirkulasikan dalam water jacket sebagai penyerap kalor di bagian condenser. Simulasi dengan program perhitungan termohidraulika RELAP5/MOD3.2 dilakukan untuk mendukung dan membandingkan dengan hasil eksperimen yang didapatkan. Hasil eksperimen menunjukkan bahwa unjuk kerja termal terbaik pipa kalor didapatkan pada tahanan termal 0,016 C/W. Unjuk kerja termal terbaik didapatkan pada saat pipa kalor diberikan filling ratio 80 , tekanan awal terendah, laju aliran pendingin tertinggi, dan beban kalor evaporator tertinggi. Dari nilai tahanan termal tersebut didapatkan bahwa pipa kalor ini memiliki kemampuan memindahkan kalor 199 kali lebih besar jika dibandingkan dengan batang pejal tembaga dengan geometri yang sama. Model pipa kalor dalam simulasi dengan RELAP5/MOD3.2 dapat digunakan untuk mendukung investigasi secara eksperimen dalam memprediksi fenomena yang berlangung di bagian dalam pipa kalor. Analisis dimensi dan keserupaan pipa kalor yang didapatkan bisa digunakan untuk merancang pipa kalor lain dengan geometri yang berbeda namun tetap menghasilkan unjuk kerja termal yang sama. Kesimpulan investigasi yang dilakukan menunjukkan bahwa pipa kalor ini memiliki unjuk kerja termal yang tinggi dan dapat digunakan sebagai sistem pendingin pasif di kolam penyimpanan bahan bakar bekas nuklir pada saat terjadinya kecelakaan akibat station blackout.

To enhance the thermal safety when station blackout accident occurs, a vertical straight wickless heat pipe is proposed as a new passive residual heat removal system in nuclear spent fuel storage pool. The heat pipe will remove the decay heat from nuclear spent fuel pool and keep the system safe. The objective of this research is to investigate the characteristics, heat transfer phenomena, and thermal performance of heat pipe, to analyse the effect of coolant flowrate against heat to be removed, analysing the dimensional similarity of heat pipe, and to know the heat pipe technology that could be used as passive safety system in nuclear installation during to station blackout accident. The experimental investigation was conducted to investigate the heat transfer phenomena and heat pipe thermal performance with considering the influence of heat pipe initial pressure, evaporator filling ratio, evaporator heat load, and coolant volumetric flow rate of water jacket. Cooling water was circulated in water jacket as condenser cooling system. A numerical simulation with nuclear reactor thermal hydraulic code RELAP5 MOD3.2 was performed to support and to compare with the experimental results. The experimental results showed that the best thermal performance was obtained at thermal resistance of 0.016 C W, with filling ratio of 80 , the lower initial pressure, higher coolant volumetric flow rate, and higher heat load of evaporator. From thermal resistance analysis, it is found that the heat pipe has the ability to remove heat 199 times greater than copper rod with the same geometry. The RELAP5 MOD3.2 simulation model can be used to support experimental investigation and to predict the phenomena inside the heat pipe. The dimensional analysis and similitude of the heat pipe can be applied to design the other heat pipe with different geometries with produces the same thermal performance. The conclusion of investigation showed that vertical straight wickless heat pipe has higher thermal performance and can be used as passive residual heat removal system of nuclear spent fuel pool when station blackout occurs."
Depok: Universitas Indonesia, 2017
D2297
UI - Disertasi Membership  Universitas Indonesia Library