Ditemukan 1 dokumen yang sesuai dengan query
Khalishia Fira Haninda
"Diagnosis dini penyakit Parkinson mempengaruhi lebih dari 10 juta individu di seluruh dunia pada tahun 2020. Penyakit Parkinson sering kali bergantung pada gejala motorik, seperti bradikinesia, tremor saat istirahat, kekakuan, dan gangguan postural. Namun, pendekatan diagnosis klinis penyakit Parkinson memiliki keterbatasan dalam mengidentifikasi perubahan struktural otak pada tahap awal karena bergantung pada penilaian subyektif gejala motorik. Penelitian ini bertujuan untuk mengevaluasi efektivitas algoritma deep learning berbasis Convolutional Neural Network (CNN) dalam membedakan citra MRI otak pasien Parkinson dan pasien normal (control), dengan fokus pada area substantia nigra dengan orientasi sagital. Dataset diperoleh pada penelitian ini bersumber dari PPMI dan terdiri atas citra MRI dari pasien Parkinson dan kontrol sehat, yang diambil menggunakan fabrikasi Siemens AG. Proses pra-pemrosesan meliputi skull-stripping secara manual menggunakan perangkat lunak 3D Slicer dan pembagian data secara patient-wise ke dalam set pelatihan dan pengujian. Transfer learning diterapkan dengan menggunakan dua model arsitektur yaitu VGG-19 dan ResNet-50. Hasil menunjukkan bahwa kedua model mencapai akurasi validasi sebesar 67,07%, dengan irisan terbaik berbeda untuk masing-masing model (irisan 105 untuk VGG-19 dan irisan 36 untuk ResNet-50). Hasil akurasi pelatihan mendekati 100%, yang mengindikasikan overfitting akibat keterbatasan jumlah data. Visualisasi menggunakan metode Gradient-weighted Class Activation Mapping (Grad-CAM) diterapkan pada setiap irisan terbaik beserta lima irisan sebelum dan sesudahnya, yang menunjukkan pola aktivasi konsisten di area otak tengah, khususnya di sekitar substantia nigra. Temuan ini mengkonfirmasi relevansi biomarker struktural dan menunjukkan potensi pendekatan CNN dan Grad-CAM dalam membedakan karakteristik otak pasien penyakit Parkinson. Penelitian ini memperlihatkan bahwa algoritma deep learning per irisan meningkatkan akurasi klasifikasi, membantu dalam identifikasi area otak yang relevan dengan penyakit Parkinson, dan berpotensi mendukung identifikasi biomarker percitraan medis.
Early diagnosis of Parkinson’s disease affected more than 10 million individuals worldwide in 2020. Parkinson’s disease is often identified based on motor symptoms, such as bradykinesia, resting tremor, rigidity, and postural instability. However, clinical diagnostic approaches have limitations in detecting early structural changes in the brain due to their reliance on the subjective assessment of motor symptoms. This study aims to evaluate the effectiveness of deep learning algorithms based on Convolutional Neural Networks (CNNs) in distinguishing brain MRI images of Parkinson’s patients and healthy controls, with a focus on the substantia nigra area in sagittal orientation. The dataset used in this study was obtained from PPMI and consists of MRI images from Parkinson’s patients and healthy controls, acquired using Siemens AG equipment. The pre-processing stage included manual skull-stripping using 3D Slicer software and patient-wise data splitting into training and testing sets. Transfer learning was applied using two architectural models: VGG-19 and ResNet-50. The results showed that both models achieved a validation accuracy of 67.07%, with different best slice for each model (slice 105 for VGG-19 and slice 36 for ResNet-50). The training accuracy approached 100%, indicating overfitting due to the limited data size. Visualization using the Gradient-weighted Class Activation Mapping (Grad-CAM) method was applied to each best slice along with five slices before and after, showing consistent activation patterns in the midbrain area, particularly around the substantia nigra. These findings confirm the relevance of structural biomarkers and highlight the potential of CNN and Grad-CAM approaches in differentiating brain characteristics in Parkinson’s disease. This study demonstrates that per-slice deep learning algorithms improve classification accuracy, assist in identifying brain regions relevant to Parkinson’s disease, and have the potential to support imaging-based biomarker discovery in medical diagnostics. "
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2025
S-pdf
UI - Skripsi Membership Universitas Indonesia Library