Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2 dokumen yang sesuai dengan query
cover
Isfan Hany Yaman
Abstrak :
Cluster analysis dari atribut seismik merupakan suatu metode yang digunakan untuk mengelompokkan litologi dari data seismik yang telah direkam dan diproses. Secara prinsip, cluster analisis memproyeksikan N atribut seismik ke sistem koordinat dengan N-dimensi yang menghasilkan K cluster yang merepresentasikan litologi yang berbeda. Penentuan center dari data dapat dilakukan secara acak yang kemudian berubah-rubah karena proses iterasi (unsupervised). Dekomposisi spektral mengubah amplitudo seismik sebagai fungsi ruang dan waktu menjadi frekuensi, ruang, dan waktu. Dekomposisi spektral telah digunakan dalam berbagai aplikasi seperti penentuan ketebalan lapisan tipis, visualisasi stratigrafi, dan deteksi hidrokarbon secara langsung. Metode dekomposisi spektral yang biasa digunakan antara lain STFT (short-time fourier transform), CWT (continuous wavelet transform), dan EMD (Empirical Mode Decomposition). Ada banyak atribut-atribut yang dapat diekstrak dari data seismik dan pemilihan atribut yang hanya dapat mempengaruhi distribusi litologi ini secara dominan bukan merupakan hal yang mudah karena pada kenyataannya beberapa atribut tidak memberikan kontribusi dalam pengelompokkan litologi. Untuk mengurangi hal itu, penulis menggunakan principal component analysis pada atribut seismik. Metode ini memilih atribut yang telah terotasi yang memberikan kontribusi untuk clustering berdasarkan urutan nilai eigen valuenya. Hasil yang didapatkan menunjukkan konsistensi dengan peta litologi yang sudah ada. ...... Cluster analysis of seismic attributes is a method used to classify the lithology of the seismic data that has been recorded and processed. In principle, cluster analysis of seismic attributes to transform the N system with N-dimensional coordinates that produce K clusters that represent different lithologies. Determination of center of data is done through a random process that later change of due process of iteration (unsupervised). The spectral decomposition of seismic change amplitude as a function of space and time into the frequency, space and time. Spectral decomposition has been used in various applications such as thickness estimation for thin beds, visualization stratigraphy, reservoir characterization, and direct hydrocarbon detection. There are a variety of spectral decomposition methods, STFT (short-time Fourier transform), CWT (continuous wavelet transform), MPD (matching pursuit decomposition) and EMD (Empirical Mode Decomposition). The method used in this study is the method of EMD. There are many attributes that can be extracted from seismic data and the selection of attributes that can only affect the distribution of the dominant lithology is not an easy thing because of the fact that some attributes do not contribute to the grouping of lithology. To reduce it, the author uses principal component analysis on seismic attributes. This method of selecting the attributes that have been rotated to contribute to clustering based on the sequence of eigenvalues valuenya. The results obtained show consistency with existing lithologic maps.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2014;2014;2014
T42700
UI - Tesis Membership  Universitas Indonesia Library
cover
Isfan Hany Yaman
Abstrak :
Cluster analisis dari atribut seismik merupakan suatu metode yang digunakan untuk mengelompokkan litologi dari data seismik yang telah direkam dan diproses. Secara prinsip, cluster analisis memproyeksikan N atribut seismik ke sistem koordinat dengan N-dimensi yang menghasilkan K cluster yang merepresentasikan litologi yang berbeda. Penentuan center dari data dapat dilakukan melalui proses iterasi yang centernya tidak ditentukan (unsupervised), atau dengan menentukan posisi awal center dari informasi yang diketahui yang kemudian berubah-rubah karena proses iterasi (semi-supervised). Informasi yang diketahui ini misalnya dapat berasal dari atribut yang diekstrak pada posisi sumur. Ada banyak atribut-atribut yang dapat diekstrak dari data seismik dan pemilihan atribut yang hanya dapat mempengaruhi distribusi litologi ini secara dominan bukan merupakan hal yang mudah karena pada kenyataannya beberapa atribut tidak memberikan kontribusi dalam pengelompokkan litologi. Untuk mengurangi hal itu, penulis menggunakan generalized principal component analysis pada atribut seismik. Metode ini terdiri dari dua langkah; Pertama, meningkatkan variasi data dengan menggunakan metode principal komponen sehingga pemisahan data yang lebih baik bisa didapatkan, dan kedua, memilih atribut yang telah terotasi yang memberikan kontribusi untuk clustering berdasarkan urutan nilai eigen valuenya. Dalam penelitian ini penulis menggunakan metode semi-supervised. Alasan penggunaan metode tersebut adalah posisi sumur-sumur yang di bor mungkin saja berada pada tepi reservoar yang tidak mencerminkan sifat fisis batuan secara ratarata pada daerah reservoir tersebut. Kemudian jika posisi center dibuat tetap dapat mengakibatkan distorsi informasi secara umum mengenai sifat fisis batuan. Data sesimik full stack dengan beberapa sumur yang ada diproses untuk menghasilkan litologi map dari area tersebut. Hasil yang didapatkan menunjukkan konsistensi dengan peta litologi yang sudah ada yang di intrepetasi dari korelasi data sumur.
Cluster analysis of seismic attributes is a tool to classify lithologies brought by recorded and processed seismic data. In principal, cluster analysis projects N seismic attributes into N-dimension coordinate system resulting with K groups of clouds representing different lithologies. Identification of the center of the clouds and its related samples can be done differently by iterative process (unsupervised), or by defining initial centers from known information and then updating them through iterative process (semi-supervised). The information may come, for example, from attributes at well locations. There are a lot of seismic attributes that can be generated from seismic data and choosing attributes that mainly affect the distribution of the lithology clouds is not a simple task to do due to the fact that some attributes may not contribute to the separation of the clusters. To reduce that difficulty, the authors implemented a generalized principal components analysis of seismic attributes. This method consists of two steps : First, increasing the variation of data points using the principal component method such that better cluster separation can be obtained, and second, selecting contributing rotated attributes based on the rank of previously calculated eigen values. In this work, the authors using the semi-supervised methods. The reason to use those methods is that wells may be drilled at the edge of the reservoir where the rock property at that location shows deviation from the average rock property of the reservoir. Hence, fixing the center may distort the general information of rock property of the reservoir. Full stack seismic data from Boonsville area with some existing wells were processed to generate lithology map of that area. Results show consistency with existing lithology map interpreted from well correlation.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2005
S28859
UI - Skripsi Membership  Universitas Indonesia Library