Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2 dokumen yang sesuai dengan query
cover
Hasiholan, Bonavian
"Modular Air Dryer (MAD) merupakan alat pengering yang berjenis tray (rak) dryer yang berfungsi untuk dapat mengeringkan hasil-hasil pertanian seperti kopi, padi dan lain-lain. Modular Air Dryer didesain dengan konstruksi yang tidak terlalu rumit sehingga masyarakat awam dapat menirunya Pengering ini memanfaatkan energi matahari dan mekanisme udsorber sebagai metode pengeringannya. Pengeringan yang memanfaatkan energi matahari memakai metode radiasi sebagai cara perambatan kalor dan matahari ke bahan yang akan dikeringkan. Sedangkan pengeringan yang memanfaatkan mekanisme udsorber menggunakan metode konveksi (alami atau paksa) sebagai cara perambatan kalornya. Pada metode konveksi sangat perlu diperhatikan mengenai kapasitas dan keseragaman pola aliran yang mengalir melewati bahan yang akan dikeringkan.
Kapasitas aliran maksudnya adalah besarnya volume udara yang mengalir dalam satuan waktu. Besamya kecepatan udara yang mengalir melalui bahan yang akan dikeringkan adalah 2-5 m/s. Keseragaman pola aliran udara yang mengalir melalui rak-rak harus seseraaman mungkin. Hal ini bertujuan agar laju atau kecepatan pengenngan disetiap rak sama sehingga tidak ada rak yang lebih cepat kering dibandingkan dengan rak lainnya. Hal ini akan meminimalisasikan waktu pengeringan sehingga akan meningkatkan efisiensi pengeringan Untuk mendapatkan aliran udara yang cukup dan seragam pada rak-rak MAD maka dilakukan modifikasi pada modul sirkuiasi MAD hasil perancangan awal. Modifikasi dilakukan dengan mengganti tangemial blower (kapasitas rendah) dengan exhaust fan (kapasitas besar), Ialu meletakkan exhaust fan tersebut pada bagian tengah belakang modul sirkulasi MAD kemudian memberikan sirip-sirip atau fin pada tengah belakang agar aliran udara mengalir dengan menyebar dan merata pada setiap rak MAD. Untuk mengetahui apakah aliran udara sudah mencukupi dan merata maka dilakukan pengujian untuk mendapatkan data. Data yang diperlukau adalah kecepatan disetiap titik pada area sucrion dan discharge modul sirkulasi MAD. Pengambilan data dilakukan dengan melakukan pengukuran menggunakan pirot Iube dan manometer miring (inclined mcmomerer). Data mentah hasil pengukuran ini merupakan jarak pergerakan air pada manometer miring (in of water). Data mentah ini kemudian diolah untuk mendapatkan data kecepatan disetiap detik pada modul sirkulasi MAD.
Dari data hasil pengukuran dan hasil pengolahan beserta grafik dapat dilihat bahwa pola kecepatan udara pada suction rnodul sirkulasi MAD hampir merata. Sedangkan pada bagian dischargenya kurang merata. Kecepatan udara pada suction berkisar antara 0-4,477 m/s sedangkan pada discharge antara 0-1,987 m/s. Pola aliran udara yang hampir merata pada bagian suction disebabkan karena pola kecepatan udara yang masuk exhaust fun. Kecepatan udara paling besar terletak pada area blade fan yang paling jauh dari pusat exhaust fun dan sebaliknya.
Ketidakmerataan aliran udara pada bagian discharge disebabkan karena pola aliran udara yang keluar dari exhaust fun dan bentuk dari sirip-sirip. Untuk lebih memaksimalkan kemerataan udara pada bagian discharge maka jarak antara sirip-sirip harus dibuat lebih kecil. Ketidaktepatan dalam pengukuran seperti pelelakkan pitot tube memberikan hasil pengukuran yang tidak tepat. Pitot tube harus diletakkan sedemikian hingga streanlines aliran udara yang datang menuju pitot tube tegak lurus dengan impactr tube port dan sejajar dengan static tube port.

Modular Air Dryer (MAD) is a tray dryer, is used to dry farm product .such as cojee, uphuslced rice, etc. MAD is designed with simple construction, thus ordinary people can malce it. This dryer uses solar energy and aasorber mechanics to dry materials. Dryer using solar energy uses radiation method as a heat transfer method Fam solar to the objects to be dried meanwhile dryer using adsorber mechanics uses convection method (both natural orforcea) as its heat transfer method ln convection method it is necessary to consider about the capacitv and the unytormity ofjlow pattern which flows through the material to he dried lflow Capacity is the air volume flows at a unit Q)"titne. The velocity of air flows through the material rangedjrom 2-5 ni Uniformity of air _flow pattern is essential and has to be reached as uniform as possible. Unmirmity of air flow pattern is aimed to distribute the velocity of dryer at every tray .similarly thus no tray is diyjaster than another. This will minimize the time of drying thus will increase drying eficiency.
To obtain a sufiicient and uniformed air flow at MAD trays, modification fy early design of lt/MD circulation module is needed Modtyication was done by replacing tangential blower (low capacity) with exhaust fan (high capacity), placing the exhaust fan in the middle-backward of MA D circulation module, then install fins in it. This modification was conducted to control the air flow, so that it jlows uniformly in every tray. To lcnow if the airflow was sufficient and unybrm then the experiment to collect data was done. The required data was the velocity at every point at suction and discharge area of MAD circulation module. the process to collect data was done by using pitot tube and inclined manometer. Raw data as the result of experiment were the distance of water movement in the inclined nanometer (in of water). These raw data, then. were processed to get the velocity data at every point at MMD circulation module.
From the measured data, processed data and grafics, it can he seen that the air velocity pattern at suction of MAl) circulation module almost untfornt. Meanwlzile at the discharge area, it was not. Air velocity at the suction range between 0-4,4 77 nz/s meanwhile at the discharge between 0-1,987 m/s. The almost uniformity at the suction is caused by the incoming of the air velocity pattern to the exhaust fan. The biggest air velocity is on the furthest distance blade fan area froitt the center of exhaust fan. Unifornity at the discharge is caused by the outgoing of the air velocity pattern from the exhaust fan which is similar with the incoming one and the shape of the jus. To maxinize the air flow unifornity at the discharge area, then the space between fins must be maxinize. lnaccuraney in measurement such as placement of pitot tube to the air flow give uncorrect result. The measurement with pitot tube requires placement at pitot tube such that those streamlines of airflow will he perpendicular to impact tube port and will be align with static tube port.
"
Depok: Fakultas Teknik Universitas Indonesia, 2003
S37066
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hasiholan, Bonavian
"[ABSTRAK
Tujuan dari penelitian ini adalah untuk mengembangkan proses ?green? baru
untuk produksi H2O2 melalui rute sintesis langsung, di mana selama reaksi
hidrogen dan oksigen saling kontak satu sama lain. Sebuah pendekatan
elektrokimia dengan rotating ring disk electrode (RRDE) telah dieksplorasi dan
dikembangkan secara sistematis yang bertujuan untuk mengukur H2O2 yang
diproduksi. Dua metode yang berbeda - co-reduction and successive reduction
dengan menggunakan microwave diadopsi untuk mempersiapkan bimetal
nanocatalysts Pd-Au/C. Hubungan antara struktur nanocatalysts dan aktivitas
katalitik dalam proses sintesis langsung diselidiki. Bimetal Pd-Au/C yang telah
disintesa, dikarakterisasi dengan ICP-AES, XRD, SEM, TEM, dan XAS untuk
pemahaman yang lebih baik dalam aktivitas katalitik sintesis H2O2 secara
langsung.
Pendekatan dalam elektrokimia untuk mengukur H2O2 yang dihasilkan dari
sintesis langsung telah berhasil dilakukan dengan sistem reaksi 2, dimana katalis
tersebar secara homogen dalam larutan. Kurva kalibrasi variasi konsentrasi H2O2
dibuat dalam parameter 0,891 V (vs Ag/AgCl) dan dengan scan rate 50 mV/s. CR
Pd3%-Au2%/C yang disintesa oleh co-reduction merupakan optimal loading
dengan produktivitas H2O2 65,8 mol.kgcat-1h-1. Produktivitas ini lebih tinggi dari
sample katalis lainnya, seperti monometallic Pd0%-Au5%/C & Pd5%-Au0%/C
dan bimetal SR Pd-Au/C yang disintesis dengan successive reduction.
Produktivitas yang lebih tinggi atau lebih rendah dari satu sampel ke yang lain
dijelaskan oleh parameter-parameter seperti ukuran partikel, struktur bimetal Pd-
Au/C, bidang kristal yang selektif, dan peran paladium dan emas. Ukuran partikel
yang lebih kecil cenderung memiliki Pd yang lebih banyak, sedangkan yang lebih
besar cenderung memiliki Au yang lebih banyak. Ukuran partikel yang lebih kecil
memiliki daerah permukaan yang lebih tinggi, sehingga produktivitas meningkat.
Namun, jika ukuran partikel terlalu kecil, permukaan yang aktif atau bidang
kristal yang selektif mungkin sedikit muncul (seperti dapat dilihat dalam SR Pd-
Au/C), sehingga produktivitas menurun.
vii
Dari analisis XAS, CR Pd-Au/C memiliki struktur Au lebih banyak di core dan Pd
lebih banyak di shell. Struktur SR Pd-Au/C di beberapa bagian dari katalis adalah
Au lebih banyak di core dan Pd lebih banyak di shell, sementara pada bagian lain,
Pd lebih banyak di core dan Au lebih banyak di shell. Nilai Q pada SR PdAu
(0,638) lebih tinggi daripada CR PdAu (0,605), yang menunjukkan bahwa
keberadaan atom Au di shell SR PdAu lebih dari itu CR PdAu. Perbedaan dalam
struktur adalah salah satu alasan mengapa produktivitas H2O2 CR PdAu lebih
tinggi dari SR PdAu. Peran Pd adalah untuk memberikan luas permukaan untuk
oksidasi selektif dari hidrogen dan peran Au adalah untuk menyediakan situs aktif
untuk reaksi dekomposisi dan hidrogenasi H2O2.

ABSTRACT
The purpose of this study is to develop a new green process for production of
H2O2 through the direct synthesis route, of which the hydrogen and oxygen
contacts each other during the reaction. An electrochemical approach with the
rotating ring disk electrode (RRDE) had been systematically explored and
developed accordingly to measure the produced H2O2. Two different methods ?
co-reduction and successive reduction prepared in the microwave were adopted to
prepare bimetallic Pd-Au/C nanocatalysts. The relationship between the structure
of prepared nanocatalysts and their catalytic activity in the direct synthesis
process were investigated. As synthesized bimetallic Pd-Au/C were characterized
by ICP-AES, XRD, SEM, TEM, and XAS for better understanding in the catalytic
activity of direct synthesis of H2O2.
The approach in the electrochemical to measure H2O2 produced from the direct
synthesis has been successfully done with the reaction system 2, where the
catalyst is dispersed homogenously in the solution. The calibration curve of the
different concentration of H2O2 is made in the parameter of 0.891 V (vs Ag/AgCl)
and with the scan rate 50 mV/s. The optimum loading of samples prepared by co
reduction was observed in CR Pd3%-Au2%/C with the productivity of H2O2 is
65.8 mol.kgcat
-1h-1. This productivity is higher than the other prepared catalysts,
such as monometallic Pd0%-Au5% & Pd5%-Au0% and bimetallic SR Pd-Au/C
that is prepared by successive reduction. The higher or the lower productivity of
one sample to another is explained by the parameter of the particle size, the
structure of the bimetallic Pd-Au/C, the selective crystalline plane, and the role of
palladium and gold. The smaller the particle size tends to Pd rich, while the larger
one tends to Au rich. The smaller particle size yielded in the high surface area,
thus the productivity increases. However, if the particle size is too small, the
active site or selective crystalline plane may be slightly appeared (as can be seen
in SR Pd-Au/C), thus the productivity decreases.
From XAS analysis, the structure CR Pd-Au/C is Au rich in core and Pd rich in
shell. The structure of SR PdAu at some part of catalyst is Au rich in core and Pd
rich in shell, while at the other part, the structure is Pd in core and Au in shell.
ix
The Q value of SR PdAu (0.638) is higher than that of CR PdAu (0.605), which
indicates that the existence of Au atoms in the shell of SR PdAu is more than that
of CR PdAu. The difference in their structure is one reason why the H2O2
productivity of CR PdAu is higher than SR PdAu. The role of Pd is to provide the
surface area for the selective oxidation of hydrogen and the role of Au is to
provide inactive site for the reaction of decomposition and hydrogenation of
H2O2., The purpose of this study is to develop a new green process for production of
H2O2 through the direct synthesis route, of which the hydrogen and oxygen
contacts each other during the reaction. An electrochemical approach with the
rotating ring disk electrode (RRDE) had been systematically explored and
developed accordingly to measure the produced H2O2. Two different methods –
co-reduction and successive reduction prepared in the microwave were adopted to
prepare bimetallic Pd-Au/C nanocatalysts. The relationship between the structure
of prepared nanocatalysts and their catalytic activity in the direct synthesis
process were investigated. As synthesized bimetallic Pd-Au/C were characterized
by ICP-AES, XRD, SEM, TEM, and XAS for better understanding in the catalytic
activity of direct synthesis of H2O2.
The approach in the electrochemical to measure H2O2 produced from the direct
synthesis has been successfully done with the reaction system 2, where the
catalyst is dispersed homogenously in the solution. The calibration curve of the
different concentration of H2O2 is made in the parameter of 0.891 V (vs Ag/AgCl)
and with the scan rate 50 mV/s. The optimum loading of samples prepared by co
reduction was observed in CR Pd3%-Au2%/C with the productivity of H2O2 is
65.8 mol.kgcat
-1h-1. This productivity is higher than the other prepared catalysts,
such as monometallic Pd0%-Au5% & Pd5%-Au0% and bimetallic SR Pd-Au/C
that is prepared by successive reduction. The higher or the lower productivity of
one sample to another is explained by the parameter of the particle size, the
structure of the bimetallic Pd-Au/C, the selective crystalline plane, and the role of
palladium and gold. The smaller the particle size tends to Pd rich, while the larger
one tends to Au rich. The smaller particle size yielded in the high surface area,
thus the productivity increases. However, if the particle size is too small, the
active site or selective crystalline plane may be slightly appeared (as can be seen
in SR Pd-Au/C), thus the productivity decreases.
From XAS analysis, the structure CR Pd-Au/C is Au rich in core and Pd rich in
shell. The structure of SR PdAu at some part of catalyst is Au rich in core and Pd
rich in shell, while at the other part, the structure is Pd in core and Au in shell.
ix
The Q value of SR PdAu (0.638) is higher than that of CR PdAu (0.605), which
indicates that the existence of Au atoms in the shell of SR PdAu is more than that
of CR PdAu. The difference in their structure is one reason why the H2O2
productivity of CR PdAu is higher than SR PdAu. The role of Pd is to provide the
surface area for the selective oxidation of hydrogen and the role of Au is to
provide inactive site for the reaction of decomposition and hydrogenation of
H2O2.]"
2011
T43916
UI - Tesis Membership  Universitas Indonesia Library