Ditemukan 2 dokumen yang sesuai dengan query
Gamar Aseffa
Abstrak :
Penelitian ini bertujuan untuk merumuskan model credit scoring untuk kredit mikro dengan menggunakan metode Multivariate Adaptive Regression Splines (MARS). Metode MARS merupakan pendekatan regresi nonparametrik yang memiliki kemampuan untuk memodelkan hubungan yang kompleks antar variabel tanpa asumsi model yang kuat dan menghasilkan model dengan akurasi tinggi yang melebihi model credit scoring lainnya dan mampu mengolah data berdimensi tinggi. Dalam beberapa tahun terakhir, MARS telah banyak diterapkan untuk memodelkan berbagai data, namun belum ditemukan penggunaanya untuk credit scoring kredit mikro. Secara umum metode credit scoring yang umum digunakan adalah analisis diskriminan dan regresi logistik. Namun kedua metode tersebut memiliki keterbatasan yaitu perlunya asumsi parametrik antara variabel respon dan prediktor. Penelitian menggunakan studi kasus data kredit mikro PT. Bank ABC yang merupakan market leader kredit UMKM di Indonesia. Hasil penelitian ini menunjukkan bahwa model penilaian kredit mikro dengan menggunakan MARS memiliki akurasi prediksi yang lebih tinggi dengan tingkat kesalahan terkecil, kesalahan tipe I dan II dibandingkan dengan Metode Regresi Logistik. Sehingga hasil penelitian ini dapat digunakan sebagai bahan pertimbangan bagi bank dalam menerapkan metode MARS dalam credit scoring dalam rangka pengendalian Risiko Non Performing Loan Kredit Mikro.
......This paper aim to formulate the credit scoring model for micro loan using the Multivariate Adaptive Regression Splines (MARS) method. The MARS method is a nonparametric regression approach that has the ability to model complex relationships between variables without strong model assumptions and produce a model with high accuracy that exceeds other credit scoring models and is able to process high-dimensional data. In recent years, MARS has been widely applied to model various data, but its use for micro loan credit scoring has not yet been found. Generally, the credit scoring methods commonly used are discriminant analysis and logistic regression. However, there are limitations to both methods, namely the need for parametric assumptions between the response variables and predictors. This study use a case study of micro loan data from PT. Bank ABC, which is the market leader for MSME loans in Indonesia.The results of this study indicate that the microcredit credit scoring model using MARS has a higher predictive accuracy with the smallest error rate, type I and II errors compared to the Logistics Regression Method. So the results of this study can be used as considerations for banks in applying the MARS method in credit scoring in order to control the Non-Performing Loan Risk of Micro Loan.
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership Universitas Indonesia Library
Gamar Aseffa
Abstrak :
Model regresi data panel spasial error dinamis adalah model regresi data panel yang melibatkan lag dari variabel dependen dan komponen dependensi spasial error. Karena terdapat korelasi antara lag dari variabel dependen dan komponen error, estimasi dengan Ordinary Least Squares menjadi bias dan tidak konsisten. Oleh karena itu, dibutuhkan metode lain untuk menaksir parameter dalam model. Metode yang dapat digunakan adalah perluasan metode Arellano dan Bond yang mencakup metode instrumental variabel menggunakan variabel instrumen yang disarankan oleh Mutl (2006) dan prinsip Generalized Method of Moments (GMM). Kemudian ditambah dengan metode pendekatan Kapoor, Kelejian, dan Prucha (KKP) sehingga dihasilkan taksiran yang konsisten.
The dynamic spatial error panel data regression model is panel data regression model which involves lag of the dependent variable and error spatial dependence. Because there is correlation between the lag of the dependent variable and error components, the ordinary least squares estimator becomes biased and inconsistent. Therefore, we need another method to estimate parameters in the model. The method which can be used is the extended method of Arellano and Bond covering instrumental variable method using instrument variables suggested by Mutl (2006) and the principle of the Generalized Method of Moments (GMM). Then the method is coupled with the method of Kapoor, Kelejian, and Prucha (KKP) approach so that it produces consistent estimators.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2011
S86
UI - Skripsi Open Universitas Indonesia Library