Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 3 dokumen yang sesuai dengan query
cover
Fernanda Hartoyo
Abstrak :
Perovskit sebagai basis sel surya memiliki efisiensi konversi daya besar. Akan tetapi pengembangan perovskit menghadapi kendala seperti ketidakstabilan, toksisitas timbal, dan stress akibat pemanasan sinar UV. Penelitian ini menggunakan metode komputasi untuk mencari kombinasi komposisi perovskit yang optimal dengan menggunakan metode conditional variational auto-encoder (CVAE). Perancangan program dilakukan dengan menggunakan set data yang berasal dari database hasil perhitungan DFT untuk dapat mengonstruksikan program generator material baru. Arsitektur program generator material baru ini terdiri dari model prediktor, model generator. Model generator dirancang untuk dapat memberikan kandidat komposisi material yang sesuai sifat target yang dibutuhkan. Model generator dilakukan dengan menggunakan metode CVAE berbasis deep learning. Model generator dengan metode CVAE berbasis deep learning didapatkan hasil pelatihan model enkoder dalam memetakan vektor komposisi sebesar 100% dengan nilai kerugian sebesar 31,8. Performa masing-masing model prediktor ditunjukkan dengan nilai skor R2 untuk celah pita, volume per atom, energi atomisasi, dan densitas material sebesar [0,90;0,99;0,97;0,96]. Program berhasil memprediksi 41 material baru dari hasil generasi 4 sifat target utama. Hasil prediksi menunjukkan bahwa program generator material yang dikembangkan pada penelitian ini dapat digunakan untuk menemukan kandidat komposisi perovskit halida hibrida organik-anorganik yang sesuai untuk aplikasi sel surya. ......Perovskite, as a base for solar cells, is the ability to perform high power conversion efficiency. However, the development of perovskite encounters several challenges, including instability, lead toxicity, and stress to UV light. This study employs computational methods to identify the optimal combination of perovskite compositions using conditional variational auto-encoders (CVAE). The program's design uses a dataset from the DFT calculation results database that has previously constructed a new material generator program. The new material generator program architecture consists of predictor and generator. The generator model provides candidate material compositions that match the required target properties using the CVAE method based on deep learning. The generator model using the CVAE method based on deep learning obtained the results of training the encoder model in mapping the composition vector at 100% with a loss value of 31.8. The performance of each predictor model achieved an R2score for energy gap, volume per atom, atomization energy, and material density of [0.90; 0.99; 0.97; 0.96]. The program predicted 41 novel materials based on generating four main desired properties. The prediction results indicate that the material generator program developed in this study successfully offers recommendations for hybrid organic-inorganic perovskite halide composition candidates for solar cell.
Depok: Fakultas Teknik Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Fernanda Hartoyo
Abstrak :
Bejana tekan  merupakan peralatan yang sebagai penampung fluida cair maupun gas dengan temperatur yang memiliki perbedaan dengan lingkungan yang ada di sekitarnya yang memiliki kemungkinan kegagalan yang tinggi yang dapat berpengaruh pada banyak faktor. Kegagalan bejana tekan dapat disebabkan karena adanya fenomena korosi seragam yang menyebabkan keluarnya fluida berbahaya dari peralatan yang memiliki tekanan karena adanya penipisan pada dinding bejana tekan. Hal ini dapat dihindari dengan melakukan inspeksi menggunakan risk-based inspection (RBI) yang mampu meningkatkan keamanan bejana tekan berbasis risiko yang dilakukan pada suatu peralatan berdasarkan prioritas risiko yang mempermudah dalam melakukan inspeksi dengan memperhatikan Probability of Failure dan Consequence of Failure. Salah satu metode untuk menganalisis risiko pada bejana tekan adalah dengan menggunakan metode pembelajaran mesin berbasis deep learning yang akan mengembangkan model penilaian risiko kegagalan bejana tekan minyak dan gas akibat korosi seragam yang dapat mempersingkat waktu, meningkatkan akurasi, efisien dalam melakukan pengolahan data, serta lebih lebih hemat biaya dengan menawarkan akurasi perhitungan yang tinggi. Penelitian menghasilkan program prediksi risiko bejana tekan dengan menggunakan klasifikasi pembelajaran mesin berbasis deep learning untuk memprediksi kegagalan pada peralatan bejana tekan akibat korosi seragam dengan menggunakan metode Risk Based Inspection dengan beberapa parameter model seperti random state senilai 25, learning rate sebesar 0.001, dengan layer berjumlah 3 dan dense 64,32,16, test size sebesar 20% dan batch size sebesar 32, dan epoch dengan nilai 150 menghasilkan akurasi model sebesar 93% yang didapatkan dari validasi confusion matrix. Nilai akurasi 93% bersumber dari 300 data yang didapatkan dari pembuatan dataset dengan berlandaskan standard API RBI 581. ...... A pressure vessel is an equipment that acts as a container for a liquid or gas with a different temperature from the surrounding environment, a high probability of failure, which can affect many factors. Pressure vessel failure can be caused by uniform corrosion, causing the dangerous liquid to be discharged from the pressure vessel due to thinning the pressure vessel wall. Pressure vessel failure can prevent failure by performing Risk Based Inspection (RBI), improving the safety and reliability of pressure vessels based on the risk performed on the equipment are based on risk priority. RBI facilitates the execution of tests that consider the probability of failure and the consequences of failure. One risk analysis method in pressure vessels is to use deep learning based machine learning to develop a failure risk assessment of pressure vessels due to uniform corrosion. This method can shorten the time, increase accuracy, be efficient in data processing, and be more cost-effective by offering high calculation accuracy. In this study, a risk prediction program of a pressure vessel is completed using a deep learning based machine learning classification to predict failure of pressure vessel using the Risk based Inspection method. This program which obtained the following model parameters such as random state of 25, a learning rate of 0.001, with three layers and dense 64,32,16, test size of 20% and batch size of 32, and an epoch with a value of 150, resulted in a model accuracy of 93% obtained from the validation of the confusion matrix. Program with accuracy of 93% comes from 300 dataset based on the RBI 581 API standard.
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fernanda Hartoyo
Abstrak :
Bejana tekan merupakan peralatan yang sebagai penampung fluida cair maupun gas dengan temperatur yang memiliki perbedaan dengan lingkungan yang ada di sekitarnya yang memiliki kemungkinan kegagalan yang tinggi yang dapat berpengaruh pada banyak faktor. Kegagalan bejana tekan dapat disebabkan karena adanya fenomena korosi seragam yang menyebabkan keluarnya fluida berbahaya dari peralatan yang memiliki tekanan karena adanya penipisan pada dinding bejana tekan. Hal ini dapat dihindari dengan melakukan inspeksi menggunakan risk-based inspection (RBI) yang mampu meningkatkan keamanan bejana tekan berbasis risiko yang dilakukan pada suatu peralatan berdasarkan prioritas risiko yang mempermudah dalam melakukan inspeksi dengan memperhatikan Probability of Failure dan Consequence of Failure. Salah satu metode untuk menganalisis risiko pada bejana tekan adalah dengan menggunakan metode pembelajaran mesin berbasis deep learning yang akan mengembangkan model penilaian risiko kegagalan bejana tekan minyak dan gas akibat korosi seragam yang dapat mempersingkat waktu, meningkatkan akurasi, efisien dalam melakukan pengolahan data, serta lebih lebih hemat biaya dengan menawarkan akurasi perhitungan yang tinggi. Penelitian menghasilkan program prediksi risiko bejana tekan dengan menggunakan klasifikasi pembelajaran mesin berbasis deep learning untuk memprediksi kegagalan pada peralatan bejana tekan akibat korosi seragam dengan menggunakan metode Risk Based Inspection dengan beberapa parameter model seperti random state senilai 25, learning rate sebesar 0.001, dengan layer berjumlah 3 dan dense 64,32,16, test size sebesar 20% dan batch size sebesar 32, dan epoch dengan nilai 150 menghasilkan akurasi model sebesar 93% yang didapatkan dari validasi confusion matrix. Nilai akurasi 93% bersumber dari 300 data yang didapatkan dari pembuatan dataset dengan berlandaskan standard API RBI 581. ......A pressure vessel is an equipment that acts as a container for a liquid or gas with a different temperature from the surrounding environment, a high probability of failure, which can affect many factors. Pressure vessel failure can be caused by uniform corrosion, causing the dangerous liquid to be discharged from the pressure vessel due to thinning the pressure vessel wall. Pressure vessel failure can prevent failure by performing Risk Based Inspection (RBI), improving the safety and reliability of pressure vessels based on the risk performed on the equipment are based on risk priority. RBI facilitates the execution of tests that consider the probability of failure and the consequences of failure. One risk analysis method in pressure vessels is to use deep learning based machine learning to develop a failure risk assessment of pressure vessels due to uniform corrosion. This method can shorten the time, increase accuracy, be efficient in data processing, and be more cost-effective by offering high calculation accuracy. In this study, a risk prediction program of a pressure vessel is completed using a deep learning based machine learning classification to predict failure of pressure vessel using the Risk based Inspection method. This program which obtained the following model parameters such as random state of 25, a learning rate of 0.001, with three layers and dense 64,32,16, test size of 20% and batch size of 32, and an epoch with a value of 150, resulted in a model accuracy of 93% obtained from the validation of the confusion matrix. Program with accuracy of 93% comes from 300 dataset based on the RBI 581 API standard.
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library