Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2 dokumen yang sesuai dengan query
cover
Fajar Nurjaman
Abstrak :
ABSTRAK
Grinding ball merupakan salah satu komponen dalam mesin ball mill yang berfungsi untuk menggerus batuan mineral menjadi partikel yang sangat halus (100-300 mesh). Penelitian ini bertujuan untuk mempelajari pengaruh penambahan unsur paduan berupa khromium, molibdenum, vanadium, dan boron terhadap sifat-sifat mekanik grinding ball terbuat dari material high chromium white cast iron, serta pengaruh volume karbida primer, karbida sekunder, dan austenit sisa terhadap ketahanan aus produk grinding ball.
Pembuatan grinding ball berukuran Ø50 mm dilakukan dengan menggunakan teknik pengecoran logam dengan menggunakan tungku induksi. Berikut ini adalah komposisi kimia dari masing-masing grinding ball dalam penelitian ini: 2,18C - 13Cr - 1.38Mo; 1.94C - 13.1Cr - 1.29Mo - 1.307V; 1.89C - 13.1Cr - 1.32Mo - 1.361V - 0.00051B; 2.12C - 16.5Cr - 1.55Mo. Proses perlakuan panas dilakukan terhadap material tersebut berupa: (1) subcritical heat treatment (700oC, 1 jam) dengan pendinginan udara atmosfer, (2) hardening (950oC, 5 jam) dengan pendinginan udara paksa, (3) tempering (250oC, 1 jam) dengan pendinginan udara atmosfer. Karakterisasi untuk mengetahui sifat-sifat mekanik dan struktur mikro dari material tersebut dilakukan melalui beberapa pengujian diantaranya adalah analisa komposisi kimia (Optical Electron Spectroscopy/OES), uji kekerasan (Brinell/ASTM E-10), uji impak (Charpy/ASTM E-23), analisa struktur mikro (mikroskop optik, SEM, XRD), dan uji ketahanan aus/wear rates (laboratory ball mill unit).
Dari hasil penelitian diperoleh bahwa penambahan khromium, molibdenum, vanadium, dan boron memberikan peningkatan yang signifikan terhadap nilai kekerasan dan ketahananan aus pada material high chromium white cast iron. Nilai ketahanan aus grinding ball yang tinggi dimiliki oleh material dengan komposisi 1.89C - 13.1Cr - 1.32Mo - 1.361V - 0.00051B (as-cast) dan 2.12C - 16.5Cr - 1.55Mo (as-tempered), dimana nilai ketahanan aus material tersebut lebih baik dibandingkan dengan grinding ball impor asal China dan India. Ketahanan aus yang tinggi pada material tersebut diakibatkan oleh nilai kekerasan dan ketangguhan yang berimbang, besarnya kandungan volume karbida primer dan sekunder dalam matriks martensit, rendahnya kandungan austenit sisa, serta morfologi karbida primer dan sekunder yang halus.
Abstract
Grinding ball is one of the components in the ball mill unit to grind the minerals rock into very fine particles (100-300 mesh). The purpose of this research are to investigate the effect of alloying elements, such as chromium, molybdenum, vanadium, and boron on the mechanical properties of grinding ball which is made from high chromium white cast iron, and to investigate the effect of primary and secondary carbide volume fraction and also retained austenite volume on the wear resistance of grinding ball.
The manufacturing of Ø50 mm grinding ball was conducted by using the iron casting process. The following are the chemical composition of the grinding ball?s materials in this research: 2.18 C-13 Cr- 1.38 Mo; 1.94 C-13.1 Cr-1.29Mo-1.307 V; 1.89 C-13.1Cr-1.32 Mo-1.361 V-0.00051B; 2.12 C-16.5 Cr-1.55 Mo. The heat treatment process were conducted into those materials include: (1) Subcritical heat treatment (700 ° C, 1 h) with atmospheric air cooling , (2) Hardening (950oC, 5 hours) with forced air cooling, and (3) Tempering (250oC, 1 hour) with atmospheric air cooling. Materials characterization was conducted to find out the mechanical properties and micro structure of those materials by using a few testing methods, there were: chemical analysis (Optical Electron Spectroscopy/OES), hardness testing (Brinell/ASTM E-10), impact testing (Charpy/ASTM E-23), micro structure analysis (optical microscope, SEM, XRD), and wear resistance/wear rates testing (laboratory ball mill unit).
From the results, the addition of alloying elements, such as chromium, vanadium, molybdenum and boron provided a significant improvement on the hardness and wear resistance of high chromium white cast iron. The high wear resistance was owned by the material with 1.89 C-13.1Cr-1.32 Mo-1.361 V-0.00051B (as-cast) and 2.12 C-16.5 Cr-1.55 Mo (as-tempered), which were better than grinding ball?s material from China and India. It was caused by a good combination between hardness and toughness, higher primary and secondary carbide volume fraction in martensitic matrix, lower retained austenite volume, and finer structure of primary and secondary carbide.
2012
T31512
UI - Tesis Open  Universitas Indonesia Library
cover
Fajar Nurjaman
Abstrak :

Pengolahan bijih nikel menggunakan teknologi peleburan konvensional (blast furnace dan rotary kiln electric furnace) membutuhkan konsumsi energi yang besar serta keekonomisan proses dibatasi hanya untuk bijih nikel kadar tinggi (lebih dari 2% Ni). Proses reduksi selektif merupakan salah satu teknologi alternatif dalam pengolahan bijih nikel laterit (kadar rendah) menjadi konsentrat ferronikel dengan menggunakan temperatur proses (atau konsumsi energi) yang rendah. Namun, rendahnya kadar nikel dan recovery yang dihasilkan masih menjadi permasalahan pada teknologi tersebut. Dalam penelitian ini telah dipelajari mengenai pengaruh basisitas (biner, terner dan kuarterner) dalam proses reduksi selektif bijih nikel laterit (limonit dan saprolit) terhadap (1) kadar dan recovery besi-nikel dalam konsentrat, (2) transformasi fasa, (3) struktur mikro ferronikel yang terbentuk, serta (4) kinetika reaksi reduksi. Proses reduksi bijih nikel laterit dilakukan menggunakan muffle furnace dengan batubara sebagai reduktan dan sodium sulfat sebagai aditif. Dari hasil penelitian diperoleh bahwa besi dan nikel dalam senyawa magnesium silikat-hidroksida (lizardite) dalam bijih nikel saprolit memiliki tingkat reduksibilitas yang lebih rendah dibandingkan dalam bentuk senyawa oksida-hidroksida (goethite) pada bijih nikel limonit. Modifikasi basisitas dengan penambahan CaO, yaitu basisitas biner (CaO/SiO2) dengan nilai 0,1 merupakan basisitas optimum untuk bijih nikel limonit (menghasilkan konsentrat dengan kadar dan recovery nikel sebesar 6,14% dan 89,94%), sedangkan basisitas terner (CaO+MgO/SiO2) dengan nilai 0,6 untuk bijih nikel saprolit (menghasilkan konsentrat dengan kadar dan recovery nikel sebesar 16,11% dan 50,57%). Penambahan CaO mampu memecah ikatan besi dan nikel dalam senyawa silikat, dimana penambahan dalam jumlah yang optimal memberikan dampak positif terhadap peningkatan kadar dan recovery nikel. Modifikasi basisitas melalui penambahan SiO2 menyebabkan terbentuknya senyawa besi silikat, yang akan menghambat laju reduksi besi oksida, namun efektivitasnya jauh lebih rendah dibandingkan besi sulfida dikarenakan titik leburnya yang tinggi. Penambahan MgO akan menyebabkan semakin banyaknya senyawa forsterite (magnesium silikat) dan diopside yang terbentuk, dimana keduanya juga memiliki titik lebur yang lebih tinggi dibandingkan troilite. Penambahan Al2O3 akan menyebabkan terbentuknya senyawa alumino-magnesioferrite dengan tingkat reduksibilitas yang rendah. 


Nickel laterite processing by using conventional technology (blast furnace and rotary kiln electric furnace) requires a large amount of energy consumption. Its feasibility is limited to high-grade ores (more than 2% Ni). The selective reduction process is an alternative technology in low-grade nickel ores processing using low temperature (or low energy consumption). Nevertheless, the low nickel grade and recovery of the product are still the main problems in the selective reduction process. In this work, the effect of basicity (binary, ternary and quarternary) in selective reduction of lateritic nickel ore (limonite and saprolite) on (1) grade and recovery of iron-nickel in concentrate; (2) phase transformation; (3) microstructure of ferronickel; and (4) kinetic of reduction has been investigated clearly. The reduction process of nickel laterite was carried out in a muffle furnace with coal and sodium sulfate as reductant and additive, respectively. The result showed that iron and nickel in silicate magnesium-hydroxide (lizardite) in saprolite had lower reducibility than oxide-hydroxide (goethite) in limonite. Modifying the basicity with CaO addition, which was 0.1 of binary basicity (CaO/SiO2), was the optimum basicity for limonite (producing concentrate with nickel grade and recovery of 6.14% and 89.94%, respectively), while the 0.6 of ternary basicity (CaO+MgO/SiO2) for saprolite (producing concentrate with nickel grade and recovery of 16.11% and 50.57%, respectively). The CaO addition could break the iron-nickel bond in silicate magnesium. Its addition in optimal amount had positively affected the increase of nickel grade and recovery. Modifying basicity with SiO2 addition caused the formation of iron silicate, which could inhibit the reduction of iron oxide. However, it has lower effectivity than iron sulfide due to its high melting point temperature. The MgO addition would promote the formation of forsterite (magnesium silicate) and diopside, which also has high melting point than troilite. The addition of Al2O3 would generate the alumino-magnesioferrite, which had low reducibility.

Depok: Fakultas Teknik Universitas Indonesia, 2022
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library