Ditemukan 1 dokumen yang sesuai dengan query
Ashari Nurhidayat
Abstrak :
Ekstraksi topik adalah kegiatan untuk mendapatkan topik dalam kumpulan dokumen berita. Ekstraksi topik memiliki peran yang penting untuk mendapatkan maksud dari keseluruhan dokumen teks tersebut. Metode yang umum digunakan dalam machine learning untuk pencarian topik utama adalah unsupervised learning, dimana topik diekstraksi dari kumpulan dokumen tanpa bergantung pada label dokumen. Salah satu metode yang dapat digunakan untuk mengekstraksi topik dari kumpulan dokumen berita yaitu latent semantic analysis (LSA). LSA mengaplikasikan teknik singular value decomposition (SVD) untuk mendapatkan hubungan kata dengan topik dalam kumpulan dokumen berita. Pada skripsi ini, dibahas mengenai implementasi metode LSA pada kumpulan dokumen dari portal berita online berbahasa Indonesia. Selanjutnya, keluaran metode LSA dibandingkan dengan hasil ekstraksi topik secara manual untuk menunjukkan keberhasilan metode LSA.
......Topic extraction is an activity to get a topic from text document collection. Topic extraction is very important in order to find out the meaning of those whole text document. The general method used in machine learning for finding the main topic is unsupervised learning, where a topic is extracted from the document collection without depending on document labels. One of Methods which can be used for extracting a topic from text document collection is latent semantic analysis (LSA). Furthermore, LSA using LSA to show a relation between words and topic in their organizer document collection. In this skripsi, the implementation of LSA method in documents collection from Indonesian online news portal discussed. Furthermore, LSA method output compared with manual extraction to demonstrate the success of LSA.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2012
S42092
UI - Skripsi Open Universitas Indonesia Library